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Abstract. This paper is concerned with the regular part of the Bloch Green’s function in a
Wigner-Seitz lattice cell. We first give a new fast converging series expression. Then we derive

an explicit expression using some Dedekind eta functions when the Bloch vector k are some

rational numbers. Finally we study its critical points.

1. The Bloch Green’s function on the lattice and Main Results

In studying of the stability of localized lattice patterns for reaction-diffusion systems (Gierer-
Meinhardt, Schnakenberg) in R2, a Bloch Green’s function is introduced in [7, 8]. For a general
complex nonzero Bloch vector k, the Bloch Green’s function takes complex form. However its
regular part, as seen below, is shown to be real (Lemma 2.1, [7]). The stability of lattice patterns
is determined by max-min properties of the regular part of the Bloch Green’s function. In this
paper our primary goal is to establish new analytical formula of the regular part and study its
critical points. For more background on the regular part of the Bloch Green’s function and its
application in biological pattern formation, we refer to recent survey article by Ward [17]. For the
lattice sum and related physical models we refer to Linton [11, 12].

We first introduce Bravais lattice cell. Let l1 and l2 be two linearly independent vectors in R2,
with angle θ between them. The Bravais lattice Λ is then defined by

Λ = {ml1 + nl2 | m,n ∈ Z}.

The parallelogram generated by the vectors l1 and l2 is called primitive cell, whose area is denoted
as |Λ|. The Wigner-Seitz or Voronoi cell centered at a given lattice point of Λ consists of all points
in the plane that are closer to this point than to any other lattice point. The Wigner-Seitz cell
is a convex polygon with the same area as the parallelogram l1 × l2. We denote the Wigner-Seitz
or Voronoi cell at the origin as Ω. For a Wigner-Seitz cell Ω and vector k 6= 0, the Bloch Green’s
function G(x;k) is defined to satisfy{

−∆G(x;k) = δ(x), x = (x1, x2) ∈ Ω

G(x + l;k) = e−2πik·lG(x;k), l ∈ Λ
(1.1)

where x = (x1, x2) belongs to Voronoi cell Ω and the Bloch vector k belongs to the dual lattice
(sometimes known as the reciprocal lattice):

Λ∗ = {d | d · l ∈ Z, ∀l ∈ Λ}.

It follows that the dual lattice satisfies

(Λ∗)∗ = Λ; |Λ∗| = 1

|Λ|
.

In the following, we parameterize Λ∗ as {nd1+md2, (m,n) ∈ Z2}, where d1 = (1, 0), d2 = (x, y),
y > 0. Hence Λ = (Λ∗)∗ = {ml1 + nl2, (m,n) ∈ Z2}, where l1 = (1,−xy ). l2 = (0, 1

y ). Thus

|Λ| = |l1 ∧ l2| = 1
y .
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Formally the Bloch Green’s function can be constructed as the sum of free-space Green’s func-
tions:

G(x;k) =
∑
l∈Λ

G0(x + l)e2πik·l, (1.2)

where the free-space Green’s function G0(x) satisfies

−∆G0(x) = δ(x). (1.3)

To calculate the summation in (1.2), we use the Poisson summation formula for Fourier transform
on the lattice, which says that∑

l∈Λ

f(x + l)e2πik·l =
1

|Λ|
∑
d∈Λ∗

f̂(d− k)e2πix(d−k), (1.4)

where Λ∗ is the dual lattice of Λ. Here we adopt the following definition of Fourier transform

f̂(ξ) =

∫
R2

e−2πix·ξf(x)dx.

By this definition, for the Gaussian distribution and Dirac measure centered at b, there holds

ê−π|x|2 = e−π|ξ|
2

, ̂δ(x− b) = e−2πib·ξ. (1.5)

To introduce the formula for the Bloch Green’s function, we introduce some notations first. Let
k = k1 + ik2 be the Bloch wave vector and l1 and l2 be the generator of the lattice, i.e.,

Λ = Λ(l1, l2) := l1Z + l2Z := {ml1 + nl2 | (m,n) ∈ Z2}.
If we treat d1,d2, l1, l2 as complex variables, we denote τ = x+ iy as quotient of the basis:

τ = − l1
l2

=
d2

d1
.

By rotation we may assume that Im(τ) > 0. Let x = (x1, x2) be the vector variable of the
Bloch Green’s function. For simplicity in computations, we also denote that

u = x · x1 + y · x2, v = x1. (1.6)

By taking Fourier transform in (1.3), we have

Ĝ0(p) =
1

4π2|p|2
. (1.7)

Combining (1.2),(1.4) and (1.7), we obtain the following formula for the Bloch Green’s function

G(x;k) =
y

4π2

∑
d∈Λ∗

e2πix·(d−k)

|d− k|2
=

1

4π2
e−2πi(k·x)

∑
(m,n)∈Z2

e2πi(mu+nv) y

|mτ + n− k|2
. (1.8)

Let
Eu,v,k(τ) =

∑
(m,n)∈Z2

e2πi(mu+nv) y

|mτ + n− k|2
. (1.9)

Then the Bloch Green’s function can be written as

G(x;k) =
1

4π2
e−2πi(k·x)Eu,v,k(τ).

The regular part of the Bloch Green’s function is then defined by

R(τ,k) = lim
x→0

(
G(x,k) +

1

2π
log | x√

|Λ|
|
)
. (1.10)

(The factor
√
|Λ| appears in above definition due to the scaling of the lattice cell area.)

In terms of Eu,v,k(τ), the regular part of the Bloch Green’s function can be expressed as

R(τ,k) = lim
x→0

( 1

4π2
Eu,v,k(τ) +

1

2π
log | x√

|Λ|
|
)
. (1.11)
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In [7], the authors derived the following formula of R(τ,k) involving a parameter η (in the spirit
of Beylkin et al. [3])

R(τ,k) =
∑
d∈Λ∗

exp(−|2πd− k|2

4η2
)

1

|2πd− k|2
+

∑
l∈Λ,l6=0

eik·lFsing(l)−
γ

4π
− log η

2π
, (1.12)

where Fsing(l) = E1(|l|2η2)/(4π), E1(z) =
∫∞
z
t−1e−tdt is the exponential integral and γ is the

Euler constant. Here finding the optimal η is critical in numerical computing. Furthermore, they
also derived the following leading-order asymptotic behavior of R(τ,k),

R(τ,k) ∼ 1

kTQk
, as k→ 0, (1.13)

where the positive-definite matrix Q is defined in terms of the parameters of the Wigner-Seitz cell.

As one can see from (1.12), the right hand side involves an artificial parameter η. The role of η
is to facilitate numerical computations. Our first result in this paper is the following general form
of R(τ,k) which is expressed by double series with exponential factors.

Theorem 1.1. Let τ = x+ iy, y > 0,k = k1 + ik2. The regular part of the Bloch Green’s function
has the form:

R(τ,k) =
(e2k2π − e−2k2π)y

4πk2

(
e2k2π + e−2k2π − 2 cos(2k1π)

)
− 1

2π
log |2π√y|

+
k2

2

2πy2

∞∑
n=1

1

n(n− k2
y )(n+ k2

y )

+
1

2π

∞∑
n=1

1

n− k2
y

∞∑
m=1

e−2πm(ny−k2) cos(2πm(nx− k1))

+
1

2π

∞∑
n=1

1

n+ k2
y

∞∑
m=1

e−2πm(ny+k2) cos(2πm(nx+ k1)).

(1.14)

Remark 1.1. When y is large, the first and second terms in (1.14) determine the leading order
behavior of R(τ,k). That is,

R(τ,k) ∼
( (e2k2π − e−2k2π)

4πk2

(
e2k2π + e−2k2π − 2 cos(2k1π)

)y − 1

2π
log |2π√y|

)
, y � 1. (1.15)

Remark 1.2. We can rewrite the third term in (1.14) by the Digamma function which is defined
as

ψ(z) :=
∂

∂z
{ln Γ(z)} =

Γ′(z)

Γ(z)
.

Then the third part in (1.14) can be rewritten as

t2

2π

∞∑
n=1

1

n(n− t)(n+ t)
=

1

4π

(
2ψ(1)− ψ(1− t)− ψ(1 + t)

)
,

where t = k2
y and we use the following summation formula ([1])

ψ(x)− ψ(y) = (x− y)

∞∑
k=0

1

(n+ x)(n+ y)
.

Remark 1.3. The fourth and fifth parts in (1.15) are harmonic although they are double series.

Remark 1.4. Observe that the series in (1.15) are fast converging due to the exponential factors.



4 SENPING LUO, CHONG WANG, AND JUNCHENG WEI

Remark 1.5. Finally we give another equivalent formula. First, we give precise domain of Bloch
wave vector k and its parametrization. From equation (1.1), by uniqueness of the solution of the
periodical boundary PDE, the Bloch Green’s function G(x;k) satisfies

G(x;k + Λ∗) = G(x;k).

It implies the periodicity of R(x;k). That is,

R(τ ;k + Λ∗) = lim
x→0

(
G(x;k + Λ∗) +

1

2π
log | x√

Λ
|
)

= lim
x→0

(
G(x;k) +

1

2π
log | x√

Λ
|
)

= R(τ ;k).

Therefore, we can restrict Bloch wave vector k in the fundamental cell of Λ∗. Equivalently,

k ∈ {sd1 + dd2 = tyi+ (s+ tx) | s, t ∈ [0, 1)},

where d1,d2 are the basis of Λ∗. We can further parameterize k as

k = tyi+ (s+ tx) | s, t ∈ [0, 1]}, i.e., k2 = ty, k1 = s+ tx; s, t ∈ [0, 1].

With this parametrization, by (1.15), we can obtain an alternative form of the regular part of the
Bloch Green’s function. That is,

R(τ, ξ) =
(e2tyπ − e−2tyπ)

4πt
(
e2tyπ + e−2tyπ − 2 cos(2(s+ tx)π)

)
− 1

2π
log |2π√y|

+
t2

2π

∞∑
n=1

1

n(n− t)(n+ t)

+
1

2π

∞∑
n=1

1

n− t

∞∑
m=1

e−2πm(n−t)y cos(2πm((n− t)x− s))

+
1

2π

∞∑
n=1

1

n+ t

∞∑
m=1

e−2πm(n+t)y) cos(2πm((n+ t)x+ s)),

(1.16)

where τ = (x, y), ξ = (s, t) and s, t ∈ [0, 1).

When k = k is a real number we have a more precise formula:

Theorem 1.2. The regular part of the Bloch Green’s function when k = k is a real number can
be written as

Rk(τ) := R(τ,k) =
y

4 sin2(πk)
− 1

2π
log
√
y − 1

2π
log 2π − 1

2π

∞∑
n=1

cos(2πnk) log |1− qn|2,

(1.17)
where q = e2πiτ , τ = x+ iy.

Next we analyze the asymptotic behavior of R(τ,k) when k → 0. We first define the periodic
Green’s function 

−∆G0(x; τ) = δ(x)− 1
|Ω| , x ∈ Ω∫

Ω
G0(x; τ)dx = 0

G0(x + l; τ) = G0(x; τ), l ∈ Λ

(1.18)

and its regular part

R0(τ) = lim
x→0

(
G0(x; τ) +

1

2π
log | x√

|Λ|
|
)

(1.19)
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which has the following form (Chen-Oshita [5]; see also Lin-Wang [10] and Sandier-Serfaty [14])

R0(τ) = − 1

2π
log |2π√y| − 1

2π
log |q1/12

∞∏
n=1

(1− qn)2|

= − 1

2π
log 2π − 1

4π
log |Im(τ)η(τ)|,

(1.20)

where q = e2πiτ , τ = x+ iy and η(τ) = q
1
6

∏∞
n=1(1− qn)4.

Remark 1.6. For the vortex lattice problem, the re-normalized energy is expressed by the regular
part of the Green’s function on the periodic lattice(i.e., k = 0 in our setting, (1.20) and (1.17)), see
Sandier-Serfaty [14]. To model di-block copolymers, one uses the Helmholze free energy. One also
reduces the energy to regular part of the Green’s function on the periodic lattice, see Chen-Oshita
[5]. Therefore, by finding the minimum of regular part of the Green’s function, it is proved that the
hexagonal or triangular lattice minimizes the energy functional. See more discussions in the last
Section.

Remark 1.7. R0(τ) and the properties of G0 also play important role in analyzing bubbling solu-
tions to mean field equations. See Lin-Wang [10].

Then we have the following asymptotic behavior.

Theorem 1.3. As k→ 0, R(τ,k) converges to regular part of the periodic Green’s function:

lim
k→0

(
R(τ,k)− y

4π2|k|2
)

= R0(τ). (1.21)

Remark 1.8. The limit formula (1.21) provides the precise asymptotic behavior as k → 0 in
contrast to the leading order asymptotic behavior proved in (1.13) [Lemma 2.2, [7]].

It turns out that when k are some given rational numbers, the regular part of the Bloch Green’s
function are closely related to R0(τ) (see (1.3)).

Theorem 1.4. When k are real numbers( 1
2 ,

1
3 ,

1
4 and 1

6), the regular part of the Bloch Green’s
function can be linearly expanded by R0(τ) with different frequencies. More precisely,

R 1
2
(τ) = −R0(τ) + 2R0(2τ) +

1

2π
log 2

R 1
3
(τ) = −1

2
R0(τ) +

3

2
R0(3τ) +

3

8π
log 3

R 1
4
(τ) = R 1

2
(2τ) +

1

2π
log
√

2

= −R0(2τ) + 2R0(4τ) +
1

2π
log

4

21/2

R 1
6
(τ) = −1

2
R 1

2
(τ) +

3

2
R 1

2
(3τ) +

3

8π
log 3

=
1

2
R0(τ)−R0(2τ)− 3

2
R0(3τ) + 3R0(6τ) +

1

2π
log 2 +

3

8π
log 3.

(1.22)

Remark 1.9. As we can see in the last section, all the critical points of R0(τ) can be classified.
(See also Lin-wang [10].) By the linear expansions in (1.22), we can obtain critical points of R(τ,k)
immediately when k are 1

2 ,
1
3 ,

1
4 and 1

6 .

Finally we discuss critical points of the regular part of the Bloch Green’s function. This is
related to the following conjecture (Conjecture 6.1, [7]):

Conjecture [Iron-Rumsey-Ward-Wei [7]]: Within the class of Bravais lattice of a common area,
minkR(τ,k) is maximized for a regular hexagonal lattice. Namely, consider the following max-min
problem

max
τ

min
k
R(τ,k). (1.23)
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The optimal lattice is a regular hexagonal lattice, i.e., τ = 1
2 + i

√
3

2 .

In [7, 8], they showed numerically that the maximizer of the objective function maxτ minkR(τ,k)
determines the optimal lattice of periodic solutions in reaction diffusion systems.

Our last result provides evidence of the Conjecture. It says the hexagonal pattern is indeed an
nondegenerate saddle point of R(τ,k).

Theorem 1.5. There is a k̃2 ∼ 0.3 such that (τ,k) = ( 1
2 + i

√
3

2 ,
1
2 + ik̃2) (which corresponds to

hexagonal lattice) is an nondegenerate saddle point (local maxτ mink ) for R(τ,k).

The paper is organised as follows. In Section 2, we derive the general form of the Bloch Green’s
function when k is any complex number[Theorem 1.1]. In Section 3, we prove Theorem 1.2 by
the method from number theory, which is an analogue in calculating the Kronecker second limit
formula. We also derive the asymptotic formula[Theorem 1.3]. In Section 4, we further study
the structures of regular part of the Bloch Green’s function by eta function/Euler modular form.
Section 5 aims to locate some critical points of R(τ,k) and derive the local extreme properties.
In particular, we give some numerical information about the max min point in the Conjecture
[Theorem 1.5].

There are many references on lattice sum, for example see sum on rectangular lattice and
arbitrary lattice in [4] and [16] respectively. Here the new ingredient in our problem is not only
lattice sum on arbitrary lattice, but also we need to find the regular part of the lattice sum and
derive its fine analytic properties. For this we use heavily the Kronecker second limit formula (see,
for example, S. Lang [9]).

2. Proof of Theorem 1.1

In this section, we derive the general formula (1.14) for R(τ,k).
One simple but very useful idea in calculating the conditionally convergent series, initiated in

analytic number theory by Siegel [15], is the following elementary algebraic identity

1

|z|2
=

1

zz
=

1

z − z
(
1

z
− 1

z
). (2.1)

Using (1.9) and (2.1), one deduces that

y−1Eu,v,k(τ)

=
∑

(m,n)∈Z2

e2πi(mv+nu) 1

|mτ + n− k|2
=

∑
(m,n)∈Z2

e2πi(mv+nu) 1

(mτ + n− k)(mτ + n− k)

=
∑
n∈Z

e2πinu 1

n(τ − τ) + 2k2i

∑
m∈Z

e2πimv(
1

nτ +m− k
− 1

nτ +m− k
)

=
∑
n∈Z

e2πinu 1

n(τ − τ) + 2k2i

( ∞∑
m=1

e2πimv(
1

nτ +m− k
− 1

nτ +m− k
)

+

∞∑
m=1

e−2πimv(
1

nτ −m− k
− 1

nτ −m− k
)
)

+
∑
n∈Z

e2πinu 1

n(τ − τ) + 2k2i
(

1

nτ − k
− 1

nτ − k
)

=
∑
n∈Z

e2πinu

n(τ − τ) + 2k2i

∞∑
m=1

(
(

e2πimv

m+ nτ − k
− e−2πimv

m− (nτ − k)
)− (

e2πimv

m+ nτ − k
− e−2πimv

m− (nτ − k)
)
)

+

∞∑
m=1

e−2πimv(
1

nτ −m− k
− 1

nτ −m− k
)
)

+
∑
n∈Z

e2πinu 1

n(τ − τ) + 2k2i
(

1

nτ − k
− 1

nτ − k
).

(2.2)
The above expression is a form of the Bloch Green’s function. One may also deduce the Bloch
Green’s function by using product of many theta functions, see [12].
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Observing that in each bracket of the expression of the Bloch Green’s function in (2.2), we
have two symmetric expressions to be taken summation. By Siegel [15], we have the following
summation formula for two symmetric expressions

∞∑
m=1

(e2πimu

z +m
+
e−2πimu

z −m
)

= 2πi
e−2πiuz

1− e−2πiz
− 1

z
. (2.3)

Thus Eu,v,k(τ, s) can be further simplified as

y−1Eu,v,k(τ, s) =
∑
n∈Z

πe2πinu

k2 − ny
( e−2πiv(nτ−k)

1− e−2πi(nτ−k)
− e−2πiv(nτ−k)

1− e−2πi(nτ−k)

)
+
∑
n∈Z

(
e2πinu − 1

) 1

n(τ − τ) + 2k2i
(

1

nτ − k
− 1

nτ − k
)

: = J1 + J2,

(2.4)

where J1 and J2 are defined above. For the second part J2 in (2.4), applying the elementary
algebraic identity (2.1), we have

J2 =
∑
n∈Z

(
e2πinu − 1

) 1

|n− k|2
. (2.5)

So J2 is an absolutely convergent series and J2 = 0 if u = 0. For the first part J1 in (2.4), we use
the well known geometric series, that is

1

1− r
=

∞∑
n=0

rn, r is a complex number and |r| < 1.

By further dividing n into three cases n > 0, n = 0 and n < 0 respectively, we have

J1 =
π

k2
(
e2πivk

1− e2πik
− e2πivk

1− e2πik
) +

∑
n 6=0,n∈Z

πe2πinu

k2 − ny
( e−2πiv(nτ−k)

1− e−2πi(nτ−k)
− e−2πiv(nτ−k)

1− e−2πi(nτ−k)

)
=

π

k2
(
e2πivk

1− e2πik
− e2πivk

1− e2πik
)

+

∞∑
n=1

π

ny − k2

(
e2πi(nu−v(nτ−k)) +

∞∑
m=1

e2πi(m−v)(nτ−k) + e−2πi(m+v)(nτ−k)
)

+

∞∑
n=1

π

ny + k2

(
e2πi(nu+v(nτ+k)) +

∞∑
m=1

e2πi(m+v)(nτ+k) + e−2πi(m−v)(nτ+k)
)
.

(2.6)

Now we can reform J1 in a symmetric way and further divide it into four parts to be computed
in different ways. That is,

J1 =
π

k2
(
e2πivk

1− e2πik
− e2πivk

1− e2πik
)

+
π

y

∞∑
n=1

( 1

n− k2
y

e2πi(n(u−vτ)+vk) +
1

n+ k2
y

e2πi(n(u+vτ)+vk)
)

+
π

y

∞∑
n=1

1

n− k2
y

∞∑
m=1

e2πi(m−v)(nτ−k) + e−2πi(m+v)(nτ−k)

+
π

y

∞∑
n=1

1

n+ k2
y

∞∑
m=1

e2πi(m+v)(nτ+k) + e−2πi(m−v)(nτ+k)

:= J10 + J11 + J12 + J13,

(2.7)

where J1j , j = 0, 1, 2, 3 are defined at above.
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The four parts in (2.7) will be dealt with separately. First, for J10, direct calculation shows that

J10|v=0 =
π(e2k2π − e−2k2π)

k2

(
e2k2π + e−2k2π − 2 cos(2k1π)

) . (2.8)

For the part J11, the series is conditionally convergent, hence one can not take limit x → 0
directly. Instead, we single out the singular part and nonsingular part in reformulating the series.
That is,

J11 =
π

y

∞∑
n=1

( 1

n− k2
y

e2πi(n(u−vτ)+vk) +
1

n+ k2
y

e2πi(n(u+vτ)+vk)
)

=
π

y

∞∑
n=1

1

n

(
e2πi(n(u−vτ)+vk) + e2πi(n(u+vτ)+vk)

)
+
k2π

y2

∞∑
n=1

( 1

n(n− k2
y )
e2πi(n(u−vτ)+vk) − 1

n(n+ k2
y )
e2πi(n(u+vτ)+vk)

)
=
π

y

(
e2πivk log(1− e2πi(u−vτ)) + e2πivk log(1− e2πi(u+vτ))

)
+
k2π

y2

∞∑
n=1

( 1

n(n− k2
y )
e2πi(n(u−vτ)+vk) − 1

n(n+ k2
y )
e2πi(n(u+vτ)+vk)

)
:= J111 + J112,

(2.9)

where J111, J112 is the singular part and nonsingular part respectively. Using the same notations
in (1.6), the singular part J111 can be handled by

lim
x→0

(
e2πivk log(1− e2πi(u−vτ)) + e2πivk log(1− e2πi(u+vτ)) + 2 log | x√

|Λ|

)
= lim

x→0

(
log(1− e2πi(u−vτ)) + log(1− e2πi(u+vτ)) + 2 log |√y · x|

)
= lim

x→0

(
2 log |1− e2πi(u−vτ)|+ 2 log |√y · x|

)
=− 2 log 2π − 2 log

√
y.

(2.10)

For the nonsingular part J112, letting x→ 0 hence u, v → 0, one deduces

J112 =
k2π

y2

∞∑
n=1

( 1

n(n− k2
y )
− 1

n(n+ k2
y )

)
=

2πk2
2

y3

∞∑
n=1

1

n(n− k2
y )(n+ k2

y )
.

(2.11)

For the remainder terms J12, J13 in (2.7), by taking limit directly, we have

lim
x→0

(J12 + J13) =
π

y

∞∑
n=1

1

n− k2
y

∞∑
m=1

2e−2πm(ny−k2) cos(2πm(nx− k1))

+
π

y

∞∑
n=1

1

n+ k2
y

∞∑
m=1

2e−2πm(ny+k2) cos(2πm(nx+ k1)).

(2.12)

Combining all the computations above, we are ready to derive the regular part of the Bloch Green’s
function from its definition, i.e.,
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R(τ,k) = lim
x→0

( 1

4π2
Eu,v,k(τ) +

1

2π
log | x√

|Λ|
|
)

= lim
x→0

( y

4π2

(
J1 + J2

)
+

1

2π
log |√y · x|

)
= lim

x→0

( y

4π2

(
J10 + J11 + J12 + J13 + J2

)
+

1

2π
log |√y · x|

)
= lim

x→0

y

4π2

(
J10 + (J111 +

2π

y
log |√y · x|) + J112 + J12 + J13 + J2

)
.

Combining (2.5), (2.8), (2.10), (2.11), and (2.12), we obtain formula (1.14) for R(τ,k). These
complete the proof of Theorem 1.1.

3. Proof of Theorem 1.2 and Theorem 1.3

In this section, we will use a different method to calculate the regular part of the Bloch Green’s
function when k is a real number. We first recall the following Fourier transformation formula

̂f(Ax + b) = e2πib·A−Tξ 1

|detA|
f̂(A−Tξ), (3.1)

where A−T can be defined as the transpose of the inverse.
From (3.1) and Poisson summation formula (1.4), we obtain the following summation identity∑

n∈Z
e−πt(n+mx−k1)2e2πinν =

∑
n∈Z

t−1/2e2πi(k1−mx)(ν+n)e−
π
t (ν+n)2 ,

where u, v, k1, k2 are real numbers.
We define

Eu,v,k(τ, s) =
∑

(m,n)∈Z2

′e2πi(mu+nv) ys

|mτ + n− k|2s
(3.2)

where τ = x + iy is in the upper plane and k = k1 + ik2. The sum being taken for all integers
mτ + n− k 6= 0. The series converges for Re(s) > 1. Then

Eu,v,k(τ) = lim
s→1+

Eu,v,k(τ, s).

The problem is transferred to find the limit formula of Eu,v,k as s → 1+. This is an analogue
to the Kronecker second limit. To calculate the Kronecker second limit formula of the Eu,v,k,
we follow the calculation as in S. Lang [9], where the classical Kronecker first and second limit
formulas are computed explicitly.

We start with the scaling(by parameter a) of the Gamma function

π−sΓ(s)

as
=

∫ ∞
0

e−πatts
dt

t
. (3.3)

Therefore, by splitting off the sum taken for m = 0, one has

y−sEu,v,k(τ, s) =
∑

(m,n)∈Z2

e2πi(mu+nv) 1(
(my − k2)2 + (n+mx− k1)2

)s
=
∑
n∈Z

e2πinv 1

k2
2 + (n− k1)2

+
∑

m 6=0,m∈Z
e2πim

∑
n∈Z

e2πinv 1(
(my − k2)2 + (n+mx− k1)2

)s
= I1 + I2.
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I1 and I2 will be calculated differently. For I1(v = 0), by (2.3), we can get the explicit summation
formula as follows

I1 =
∑
n∈Z

1

k2
2 + (n− k1)2

=
∑
n∈Z

1

(n− (ik2 + k1))(n− (−ik2 + k1))

=
π(e2k2π − e−2k2π)

2k2( e
2k2π+e−2k2π

2 − cos(2k1π))
, ∀k1, k2 ∈ R, k2

1 + k2
2 6= 0.

(3.4)

In particular if k2 = 0, we have

∑
m∈Z

e2πimu

(m− z)2
=
π2e2πizu(1− u+ ue−2πiz)

sin2(πz)
.

For the second part I2, we use the scaling of the Gamma function (3.3). Then one rewrites I2
by exponential functions

I2 =
∑

m6=0,m∈Z
e2πim

∑
n∈Z

e2πinv 1(
(my − k2)2 + (n+mx− k1)2

)s
=

πs

Γ(s)

∑
m 6=0,m∈Z

e2πimue−πt(my−k2)2
∫ ∞

0

∑
n∈Z

e2πinve−πt(n+mx−k1)2ts
dt

t

=
πs

Γ(s)

∑
m 6=0,m∈Z

e2πimue−πt(my−k2)2
∫ ∞

0

∑
n∈Z

e2πi(k1−mx)(v+n)e−
π
t (v+n)2ts−

1
2
dt

t
.

When s = 1, we summarize the terms by

I2 = π
∑

m 6=0,m∈Z
e2πim(u−vx)

∑
n∈Z

e2πin(k1−mx)

∫ ∞
0

e−π
(
t(my−k2)2+(n+v)2/t

)
t1/2

dt

t

= π
∑

m 6=0,m∈Z
e2πim(u−vx)

∑
n∈Z

e2πin(k1−mx) 1

|my − k2|
e−2π|my−k2|·|n+v|,

where we use the following integral

K 1
2
(a, b) =

∫ ∞
0

e−(a2t+ b2

t )t
1
2
dt

t
=

√
π

a
e−2ab.

When k2 = 0, we can proceed with the help of the following summation formula:

∞∑
n=1

rn

n
= − log(1− r), |r| < 1.

For I2, we only need to calculate its value at s = 0, k2 = 0. By taking first n = 0 and using the
double sum

∑
m6=0 =

∑∞
m=1 +

∑−∞
m=−1, we get the following summation formula:

∞∑
m=1

1

m
e2πim((u−vx)+iyv) +

∞∑
m=1

1

m
e2πim(−(u−vx)+iyv)

=− log(1− e2πi(u−vτ))(1− e−2πi(u−vτ)).

Notice that m(u− vx) + n(k1 −mx) + i|m| · y · |n+ v| can be rewritten as m(u− vτ − nτ) + nk1

if mn > 0 and m(u− vτ − nτ) + nk1 if mn < 0. Then for I2, we have
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I2 =
π

y

∑
m6=0,m∈Z

e2πim(u−vx)
∑
n∈Z

e2πin(k1−mx) 1

|m|
e−2π|my|·|n+v|

=
π

y

( ∑
m 6=0,n=0

+
∑

m>0,n>0

+
∑

m<0,n<0

+
∑

m>0,n<0

+
∑

m<0,n>0

)
=
π

y

(
− log(1− e2πi(u−vτ))(1− e−2πi(u−vτ))−

∞∑
n=1

e2πink1 log(1− e2πi(u−vτ−nτ))

−
∞∑
n=1

e−2πink1 log(1− e2πi(vτ−nτ−u))−
∞∑
n=1

e−2πink1 log(1− e2πi(u−vτ+nτ))

−
∞∑
n=1

e2πink1 log(1− e2πi(−u+vτ+nτ))
)

=
π

y

(
− log(1− qz)(1− q−z)−

∞∑
n=1

e2πink1 log(|1− qnτ qz|2)−
∞∑
n=1

e−2πink1 log(|1− qnτ /qz|2)
)

=
π

y

(
− log(|1− qz|2) + 4πvy −

∞∑
n=1

e2πink1 log(|1− qnτ qz|2)−
∞∑
n=1

e−2πink1 log(|1− qnτ /qz|2)
)
.

Here we have used the notations z = u− vτ, qz = e2πiz.
Therefore, combining all the calculation above, we have the Kronecker second limit of our

Eu,v,k(τ, s) defined in (3.2) as follows

Eu,v,k(τ) = lim
s→1+

Eu,v,k(τ, s) =
π2e2πizu(1− u+ ue−2πiz)

sin2(πk1)
y + π

(
− log(|1− qz|2) + 4π2vy

− 2π

∞∑
n=1

e2πink1 log(|1− qnτ qz|2)− 2π

∞∑
n=1

e−2πink1 log(|1− qnτ /qz|2)
)

= 2π
(
q

1
4
e2πizu(1−u+ue−2πiz)

sin2(πk1)
τ − log |1− qz|+ 2πvy

−
∞∑
n=1

e2πink1 log |1− qnτ qz| −
∞∑
n=1

e−2πink1 log |1− qnτ /qz|
)
.

(3.5)

In (3.5), to obtain the regular part, we still need to calculate limu+iv→0 log |1− qz|. In view of the
notations in (1.6), we have

lim
x=(x1,x2)→0

(
− 1

2π
log |1− qz|+

1

2π
log | x√

|Λ|
|
)

= lim
x=(x1,x2)→0

(
− 1

2π
log |1− e2πy(x1+ix2)|+ 1

2π
log |√y · x|

)
=− 1

2π
log
√
y − 1

2π
log 2π.

(3.6)

For the remainder terms in Eu,v,k(τ) (3.5), it is straightforward to take limit since there are no
singularities in the functions. Therefore, combining (1.11), we obtain Theorem 1.2.

To prove Theorem 1.3, we will use summation formula (3.4) in proving Theorem 1.2 and the
main result in Theorem 1.1. By (3.4), one recognizes that the first part in (1.14) can be expanded
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by singular and nonsingular part respectively in the following formula

(e2k2π − e−2k2π)y

4k2π(e2k2π + e−2k2π − 2 cos(2k1π))
− y

4π|k|2
=

y

4π2

(∑
n∈Z

1

k2
2 + (n− k1)2

− 1

k2
2 + k2

1

)
=

y

4π2

∑
n∈Z,n6=0

1

k2
2 + (n− k1)2

.

Now it is clear that

lim
k→0

( (e2k2π − e−2k2π)y

4k2π(e2k2π + e−2k2π − 2 cos(2k1π))
− y

4π|k|2
)

=
y

4π2

∑
n∈Z,n6=0

1

n2
=

y

12
.

Once this is done, it is straightforward to find the limit formula in Theorem 1.3 by Theorem 1.1
after some elementary computation which we omit the details here.

4. Proof of Theorem 1.4

In this section, we give relatively concise expressions for regular part of the Bloch Green’s
function when k are some given rational real numbers by using the fourth order Dedekind eta
function. Note that the eta function is invariant under the modular group as we will see below.

Recall the Dedekind eta function as defined by

ηD(z) = e
πiz
12

∞∏
n=1

(1− e2πinz).

It satisfies following two important properties of ηD(z) (see Apostol [2]):

ηD(τ + 1) = e
πi
12 ηD(τ),

ηD(−1

τ
) =
√
−iτηD(τ).

The eta function will be used in the current paper is

η(z) = η4
D(z).

Then one has

η(τ + 1) = e
πi
3 η(τ),

η(−1

τ
) = −τ2η(τ).

Hence
|Im(τ + 1)η(τ + 1)| = |Im(τ)η(τ)|,

|Im(−1

τ
)η(−1

τ
)| = |Im(τ)η(τ)|.

Note that the Modular group is generated by S : τ → τ + 1 and T : τ → − 1
τ . It follows that the

function |Im(τ)η(τ)| is invariant under the Modular group. That is,

|Im(Γ(1)τ)η(Γ(1)τ)| = |Im(τ)η(τ)|.

Here the Modular group is

Γ(1)τ = {aτ + b

cτ + d
| ad− bc = 1; a, b, c, d ∈ Z}. (4.1)

Our results in this section show that the regular part of the Bloch Green’s function is related the
function log |Im(τ)η(τ)| and can be expressed by a linear combination of functions like |Im(τ)η(τ)|
with different “frequencies”.
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We consider the case k2 = 0. As in (1.17)[Theorem 1.2], we have

Rk(τ) = − 1

2π
log |2π√yqC(k)| − 1

2π

∞∑
n=1

cos(2πnk) log |(1− qn)|2

= − 1

2π
log |2π√y| − 1

2π
log |qC(k)Π∞n=1(1− qn)2 cos(2πnk)|,

(4.2)

where q = e2πiτ , τ = x+ iy and

C(k) =
1

4π2

∑
n∈Z,k∈(0,1)

1

|n− k|2
=

1

4 sin2(πk)
.

Since

lim
k→0

(
C(k)− 1

4π2k2

)
=

1

12
,

we have

lim
k→0

(
Rk(τ)− y

4π2k2

)
= R0(τ). (4.3)

where R0(τ) is defined in (1.20) (Chen-Oshita [5]). This is the weak version of Theorem 1.3.

In the following, we will derive simplified forms of Rk(τ) with k = 1
2 ,

1
3 ,

1
4 ,

1
6 based on the eta

functions.
We first consider R 1

2
(τ) by writing it in Euler modular form:

R 1
2
(τ) = − 1

2π
log |2π√yq1/4|+ 1

2π
log |

∏∞
n=1(1− qn)2∏∞
n=1(1− q2n)4

|

= − 1

2π
log |2π√y|+ 1

2π
log |η

1/2(τ)

η(2τ)
|, τ = x+ iy

= − 1

2π
log 2π +

1

4π
log |Im(τ)η(τ)| − 1

2π
log |Im(2τ)η(2τ)|+ 1

2π
log 2.

(4.4)

A theta function expression related to R 1
2
(τ) is

θ2(0, q) = θ10(0; τ) =
2η2(2τ)

η(τ)
.

Then we have R 1
2
(τ) expressed by theta function. That is,

R 1
2
(τ) = − 1

4π
log |yθ10(τ)| − 1

4π
log |2π2|.

For k = 1
3 , again by reforming it in Euler modular form, one deduces

R 1
3
(τ) = − 1

2π
log |2π√yq1/3| − 1

2π

∞∑
n=1

cos(
2π

3
(3n− 1)) log |(1− q3n−1)2|

− 1

2π

∞∑
n=1

cos(
2π

3
(3n− 2)) log |(1− q3n−2)2| − 1

2π

∞∑
n=1

cos(
2π

3
(3n)) log |(1− q3n)2|

= − 1

2π
log |2π√y|+ 1

2π
log |

q1/24
∏∞
n=1(1− qn)

(q3)3/24
∏∞
n=1(1− (q3)n)3

|

= − 1

2π
log |2π√y|+ 1

2π
log | η

1/4(τ)

η3/4(3τ)
|, τ = x+ iy

= − 1

2π
log 2π +

1

8π
log |Im(τ)η(τ)| − 3

8π
log |Im(3τ)η(3τ)|+ 3

8π
log 3.

(4.5)
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Next, for k = 1
4 ,

1
6 , in a similar way by reforming the series in quotients of infinite products, one

deduces that

R 1
4
(τ) = − 1

2π
log |2π√yq1/2|+ 1

2π

∞∑
n=1

log | (1− (q2)2n−1)2

(1− (q2)2n)2
|

= − 1

2π
log |2π√y|+ 1

2π
log |η

1/2(2τ)

η(4τ)
|, τ = x+ iy

= − 1

2π
log 2π +

1

4π
log |Im(2τ)η(2τ)| − 1

2π
log |Im(4τ)η(4τ)|+ 1

2π
log

4

21/2
,

(4.6)

and

R 1
6
(τ) = − 1

2π
log |2π√yq|+ 1

2π
log |

∞∏
n=1

(1− (q2)n)2(1− (q3)n)3

(1− qn)(1− (q6)n)6
|

= − 1

2π
log |2π√y|+ 1

2π
log |

(q2)1/12
∏∞
n=1(1− (q2)n)2 · (q3)1/8

∏∞
n=1(1− (q3)n)3

q1/24
∏∞
n=1(1− qn) · (q6)1/4

∏∞
n=1(1− (q6)n)6

|

= − 1

2π
log |2π√y|+ 1

2π
log |η

1/2(2τ)η3/4(3τ)

η1/4(τ)η6/4(6τ)
|

= − 1

2π
log 2π +

1

4π
log |Im(2τ)η(2τ)|+ 3

8π
log |Im(3τ)η(3τ)|

− 1

8π
log |Im(τ)η(τ)| − 3

4π
log |Im(6τ)η(6τ)|+ 1

2π
log

63/2

21/233/4
.

(4.7)

Now Theorem 1.4 follows from the simplified expressions in (4.4), (4.5), (4.6), and (4.7).
At the end of this section, we give some asymptotic behavior of R 1

2
(τ) − aR0(τ), where a is a

parameter. We start with the asymptotic behavior of log |yη(iy)| by direct computation,

log |yη(iy)| = −π
3
y + log y + o(log y), y → +∞. (4.8)

By the invariance property, that is, |yη(iy)| = | 1yη(i 1
y )|, the limit behavior of log |yη(iy)| at ∞

(4.8) implies the limit behavior around zero. That is,

log |yη(iy)| = − π

3y
+ log

1

y
+ o(log

1

y
), y → 0+. (4.9)

For the asymptotic behavior of R 1
2
(τ) − aR0(τ) on the vertical line x = 0, combining (4.8) and

(4.9), we have

R 1
2
(τ)− aR0(τ) =

1

12
(3− a)y +

a− 1

4π
log y + o(log y), y → +∞,

= −a− 1

12y
+

a

4π
log

1

y
+ o(log

1

y
), y → 0+.

(4.10)

To ensure that R 1
2
(τ)− aR0(τ) has a maximum at some inside point of the upper plane, we need

a ≥ 3.

5. Critical points, extreme properties and proof of Theorem 1.5

In this section, we aim to study the critical points of R(τ,k), in view of the Conjecture stated at
the end of Section 1. Although we have the explicit expression of R(τ,k), we are unable to find all
the critical points of R(τ,k) due to its complicated structure; in particular, locating all the max min
points of R(τ,k) seems difficult, which is exactly connect to Conjecture in the introduction.

As k → 0, R(τ,k) converges to R0(τ) with respect to the Bloch wave number k, see (1.21)
(Theorem 1.3). On the other hand, when k = 1

2 ,
1
3 ,

1
4 ,

1
6 , R(τ,k) can be written linearly by R0(τ)

[Theorem 1.4]. These facts motivate us to use the critical points of R0(τ) to find the critical points
of R(τ,k).
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To classify all the critical points of R0(τ), we first study the monotonicity properties of R0(τ).
The horizontal monotonicity of R0(τ) was proved in Chen-Oshita [5], but this is not enough to
classify all the critical points of R0(τ). We then turn to construct the vertical monotonicity of
R0(τ) [(5) in 5.1]. This also provides an alternative approach to find the minimum of R0(τ). This
is contained in the following proposition whose proof will be given at the end of the section.

Proposition 5.1. For R0(τ), the following properties hold

(1) ∂
∂yR0(0, y) ≥ 0 for y ≥ 1, with “=” when y = 1;

(2) R0( 1
2 , y) has and only has three critical points. They are {

√
3

6 ,
1
2 ,
√

3
2 };

(3) Special values on the critical points are equal: R0(0, 1) = R0( 1
2 ,

1
2 ), R0( 1

2 ,
√

3
2 ) = R0( 1

2 ,
√

3
6 );

(4) ∂
∂y |x2+y2=1R0(x, y) ≥ 0 for x ∈ [0, 1

2 ], with “=” when x = 0, 1
2 ;

(5) On vertical monotonicity on the half fundamental domain. ∂
∂yR0(x, y) > 0 on {z = x+iy ∈

H : |z| > 1 and 0 < Re(z) < 1
2};

(6) There is only one critical point on the line x = 0, which is (0, 1); there are only three

critical points on the line x = 1
2 , which are ( 1

2 ,
1
2 ), ( 1

2 ,
√

3
2 ), ( 1

2 ,
√

3
6 ).

We already know that R0(τ) is invariant under the modular group Γ(1) (See (4.1)). Direct
calculation shows that R0(τ) is also invariant under the reflective transformation z → −z. The
fundamental region under Γ(1) and reflective transformation is

{z = x+ iy ∈ H := (x, y), y > 0 : |z| > 1 and 0 < Re(z) <
1

2
}

by number theory, see e.g. [6].

In the following Proposition, we show that ( 1
2 ,
√

3
2 ) is a global minimum point (hence critical

point) of R0(τ) [Chen-Oshita [5], Sandier-Serfaty [14]]. Actually, we can classify all the critical
points of R0(τ). In this direction, we also remark to the readers that there are some unknown but
maybe interesting connection between our classification results about critical points of R0(τ) and
the critical points of G0(x; τ) as shown in Lin-Wang [10]. Actually, R0(τ) is the regular part of
the Green’s function G0(x; τ) ((1.19)). Depending on the lattice structure(i.e., τ), Lin-Wang [10]
showed that the Green’s function G0(x; τ) has either 3 or 5 critical points.

Proposition 5.2. R0(τ) only has two types of critical points, they are nondegenerate.

(1) Type 1:

(0, 1)/{az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1 or − z},

i.e., the represent element is (0, 1) under the modular group and reflective transformation.
Type 2:

(
1

2
,

√
3

2
)/{az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1 or − z};

(2) ( 1
2 ,

1
2 ) and ( 1

2 ,
√

3
6 ) is type 1 and type 2 critical point respectively;

(3) (0, 1) is a nondegenerate saddle point and ( 1
2 ,
√

3
2 ) is a global minimum point; All the critical

points of R0(τ) are nondegenerate.

Proof. By (5) in Proposition 5.1, it follows that the points (0, 1) and (1
2 ,
√

3
2 ) are the only critical

points of R0(x, y) on the region {z = x+iy ∈ H : |z| ≥ 1 and 0 ≤ Re(z) ≤ 1
2}. All the other critical

points on the upper half plane are generated by these two points under the modular group and
reflective transformation. This proves (1). (2) follows from (3) in Proposition 5.1. In y direction,
(0, 1) is a global minimum, see (1) in Proposition 5.1 and (5.5). To complete the proof, we will
show that in the x direction, (0, 1) is a local maximum point.

Direct calculation shows that

∂

∂x
R0(τ) |y=1 =

∞∑
n=1

−2ne−2πn sin(2πnx)

1− 2e−2πn cos(2πnx) + e−4πn
.
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Using the elementary trigonometric inequality | sin(na)| ≤ n| sin(a)|(a is any real number) and
dividing the summation into n = 1 and n ≥ 2, we have

− ∂

∂x
R0(τ) |y=1 = (

1∑
n=1

+

∞∑
n=2

)
2ne−2πn sin(2πnx)

1− 2e−2πn cos(2πnx) + e−4πn

≥ 2e−2π sin(2πx)

1− 2e−2π cos(2πx) + e−4π
−
∞∑
n=2

2n2e−2πn sin(2πx)

1− 2e−2πn cos(2πnx) + e−4πn

≥ 2e−2π sin(2πx)
( 1

(1 + e−2π)2
−
∞∑
n=2

n2e−2π(n−1)

(1− e−6π)3

)
= e−2π sin(2πx)

( 1

(1 + e−2π)2
− e−2π(4− 3e−2π + e−4π)

(1− e−6π)3(1− e−2π)3

)
= e−2π sin(2πx)(0.9962755500− 0.0075012615)

≥ 0, for x ∈ [0,
1

2
],

(5.1)

where we have used the summation formula
∞∑
n=2

n2rn = r[r[
r2

1− r
]′]′ =

r2(4− 3r + r2)

(1− r)3
.

Notice that ∂
∂xR0(τ) |y=1 is an odd function, inequality (5.1) implies that R0(τ) |y=1 has a local

maximum at point x = 0.
By similar asymptotic analysis in (4.8) and (4.9), we deduce that limy→0+ R0(τ) = +∞ and

limy→+∞R0(τ) = +∞. This implies that R0(τ) admits a minimum for finite positive y. We
already known that type 1 critical point (0, 1) is a saddle point. Then the global minimum point

must be ( 1
2 ,
√

3
2 ). This provides an alternative proof of minimality of R0(τ) on the hexagonal point

( 1
2 ,
√

3
2 ).

�

In view of (3) in the following Proposition 5.3, we obtain Theorem 1.5.

Proposition 5.3. On critical points for regular part of the Bloch Green’s function, we have

(1) The regular parts R 1
2
(τ), R 1

3
(τ), R 1

4
(τ) has critical points ( 1

2 ,
1
2 ), ( 1

2 ,
√

3
6 ), ( 1

4 ,
1
4 ) respec-

tively. They all are nondegenerate saddle points;
(2) If k = k1, then the regular part = Rk(τ) := R(τ, k) has at least one critical point ( 1

2 ,
1
2 ,

1
2 ).

In k direction, it is a local minimum; in τ direction it is a saddle point.

(3) (General case) The regular part R(τ ;k) has one critical point ( 1
2 ,
√

3
2 ,

1
2 ,≈ 0.3), which is a

local maxτ mink point. This is a numerical result.

Proof. (1) : It follows from combinatorial identities (1.22) and Proposition 5.2.
(2) : Direct calculation gives ∂

∂kR(τ ; 1
2 ) = 0 and R(τ ; 1

2 ) = R 1
2
(τ). Then (2) follows (1).

(3): To find the critical points of R(τ,k), we need to calculate the partial derivatives. From
(1.14), we have

∂

∂x
R(τ,k) =−

∞∑
n=1

n

n− k2
y

∞∑
m=1

me−2πm(ny−k2) sin(2πm(nx− k1))

−
∞∑
n=1

n

n+ k2
y

∞∑
m=1

me−2πm(ny+k2) sin(2πm(nx+ k1))

(5.2)

and
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∂

∂k1
R(τ,k) = −

y
(
e2k2π − e−2k2π) sin(2k1π)

k2(e2k2π + e−2k2π − 2 cos(2k1π)
)2

+

∞∑
n=1

1

n− k2
y

∞∑
m=1

me−2πm(ny−k2) sin(2πm(nx− k1))

+

∞∑
n=1

1

n+ k2
y

∞∑
m=1

me−2πm(ny+k2) sin(2πm(nx+ k1)).

(5.3)

It is obvious that ∂
∂xR(x, y; k1, k2) = ∂

∂k2
R(x, y; k1, k2) = 0 if x = 0 or 1

2 and k1 = 0 or k1 = 1
2 .

From (5.2) and (5.3), we fix x = 1
2 , k1 = 1

2 . Then by numerical finding the zero points of
∂
∂yR(τ ;k) = 0 and ∂

∂k1
R(τ ;k) = 0, we obtain the result.

�

Proposition 5.4. On some properties of the regular part of the Bloch Green’s function:

• R(τ + 1;k) = R(τ ;k);
• R(τ ;−k) = R(τ ;k);
• R(τ ;k + 1) = R(τ ;k);
• R(1− τ ;k) = R(τ ;−k);

Proof. It follows directly from the formula (1.15). �

Proof of Proposition 5.1.

Proof. By straightforward calculation, we have

∂2

∂y2
R0(0, y) =

1

y2
+

∞∑
n=1

16π2n2e−2nπy

(1− e−2πny)2
> 0 for y > 0. (5.4)

On the other hand, R0(z) = R0(− 1
z ) gives R0(0, y) = R0(0, 1

y ). Consequently,

∂

∂y
R0(0, y) = −y−2 ∂

∂y
R0(0,

1

y
). (5.5)

It follows that ∂
∂yR0(0, 1) = 0. Combining (5.4), this proves (1). Since R0(−z) = R0(z), (1)

implies that (0, 1) is a critical point of R0(x, y).
Let τξ := − 1

ξ , σξ := −ξ, hence στ( 1
2 + iy) = 2

4y2+1 + i 4y
4y2+1 . The invariance of R0(z) under the

transforms τ, σ gives

| yη(
1

2
+ iy |= | 4y

4y2 + 1
η(

2

4y2 + 1
+ i

4y

4y2 + 1
)| ⇒ |η(

1

2
+ iy)| = | 4

4y2 + 1
η(

2

4y2 + 1
+ i

4y

4y2 + 1
)|.

Differentiating with respect to y, we have

∂

∂y
log |η(

1

2
+ iy)| =− 8y

4y2 + 1
+

∂

∂z
|z= 2

4y2+1
,w= 4y

4y2+1

log |η(z + iw)|

− 4(4y2 − 1)

(4y2 + 1)2
· ∂
∂w
|z= 2

4y2+1
,w= 4y

4y2+1

log |η(z + iw)|.
(5.6)

On the other hand, direct computation of log |η(z, w)| gives

∂

∂z
log |η(z + iw)| =

∞∑
n=1

4nπe−2nπw sin(2nπz)

1 + e−4nπw − 2e−2nπw cos(2nπz)
. (5.7)

Consequently,
∂

∂z
|
z= 1

2 ,w=
√

3
2

log |η(z + iw)| = 0. (5.8)
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Inserting y =
√

3
2 in (5.6) and combining (5.8), we have

∂

∂y
|
y=
√

3
2

log |η(
1

2
+ iy)| = −2

√
3

3
.

Hence ∂
∂y |y=

√
3

2

log |yη( 1
2 + iy)| = 0. Next we derive a functional equation of ∂

∂yR0( 1
2 , y). Since

ξ| → S(ξ) := ξ−1
2ξ−1 ∈ Γ(1) and S( 1

2 + iy) = 1
2 + i 1

4y , one deduces

R0(
1

2
, y) = R0(

1

2
,

1

4y
). (5.9)

It follows that
∂

∂y
R0(

1

2
, y) = − 1

4y2

∂

∂y
R0(

1

2
,

1

4y
). (5.10)

Combining (5.10), one deduces that ∂
∂yR0( 1

2 , y)|y= 1
2

= 0. ∂
∂yR0( 1

2 , y)|
y=
√

3
6

= 0. Along with the

conclusion that the function ∂
∂yR0(τ) |x= 1

2
is positive on (

√
3

6 ,
1
2 ) and (

√
3

2 , 1), negative on (0,
√

3
6 )

and ( 1
2 ,
√

3
2 ) [13], we prove (2), (3).

(4): Consider the composition of the two maps z → w′ = z
z+1 , w → 2w′ − 1 = z−1

z+1 , we have

R0(x, y) = R0(u(x, y), v(x, y)), where u(x, y) = x2+y2−1
(x+1)2+y2 , v(x, y) = 2y

(x+1)2+y2 . Now differentiating

with respect to y, we have

∂

∂y
|x2+y2=1R0(x, y) =

x

1 + x

∂

∂y
R0(

1

2
,

√
1− x2

1 + x
). (5.11)

Here we have used that ∂v
∂y |x2+y2=1 = x

1+x and ∂
∂xR0( 1

2 , y) = 0(see (5.7)). Therefore (4) follows

from (5.11) and (2).
Consider the transform z → z

z+1 ∈ Γ(1) which maps i to 1
2 + i 1

2 , by invariance property of

R0(τ), we have R0(0, 1) = R0( 1
2 ,

1
2 ).

(5): Note that

−∆
∂

∂y
R0(x, y) = 2y−3 > 0.

Strong maximum principle and (1), (2), (4) imply (5).
(6): In view of (5.7), critical points of R0(0, y), R0( 1

2 , y) are critical points of R0(x, y) automat-
ically.

The proof of Proposition 5.1 is thus completed.
�
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