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CLASSIFICATION FOR SINGULAR POSITIVE SOLUTIONS TO CRITICAL
SIXTH ORDER EQUATIONS

JOAO HENRIQUE ANDRADE AND JUNCHENG WEI

ABSTRACT. We classify entire singular positive solutions to a family of critical sixth order equations
in the punctured space with a non-removable singularity at the origin. More precisely, we show
that when the origin is a non-removable singularity, solutions are given by a singular radial factor
times a periodic solution to a sixth order IVP with constant coefficients. On the technical level,
we combine integral sliding methods and qualitative analysis of ODEs, based on a conservation of
energy result, to perform a topological two-parameter shooting technique. We first use the integral
representation of our equation to run a moving spheres technique, which proves that solutions are
radially symmetric with respect to the origin. Thus, in Emden—Fowler coordinates, we can reduce
our problem to the study of an sixth order autonomous ODE with constant coefficients. The
main heuristics behind our arguments is that since all the indicial roots of the ODE operator are
positive, it can be decomposed into the composition of three second order operators satisfying
a comparison principle. This allows us to define a Hamiltonian energy which is conserved along
solutions, from which we extract their qualitative properties, such as uniqueness, boundedness,
asymptotic behavior, and classification.
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1. INTRODUCTION

We are interested in classifying (classical) singular positive solutions v € C6(R™ \ {0}) with
n > 7 (which will always be assumed so forth) to the following family of critical sixth order PDEs
on the punctured space

(—A)3u = cnuz_tg‘ in R™\ {0}. (Pé6,00)

Here A% = Ao Ao A is the tri-Laplacian and f(u) := ¢, |u[P~?u with p = 2% := 23 is critical in

the sense of the compact Sobolev embedding of H3(R") and ¢, is a normalizing geometric constant
given by

n(n — 6)(n* — 20n? + 64)
64 )

We say that a positive solution u € C®(R™ \ {0}) has a removable singularity at the origin if
lim, g u(x) < oo, that is, it can be continuously extended across the origin. Otherwise, we say
that the origin is a non-removable singularity. Let us call these solutions non-singular and singular,
respectively.

Let us mention that the second-named author and X. Xu [36] studied non-singular solutions to
(P6,00). On this subject, they are based on a sliding technique to prove that all its non-singular
positive solutions are radially symmetric with respect to some point and have a closed expression.
This result confirmed a conjecture by E. Lieb [27] about the classification of extremal function for
the Sobolev inequality. These results can be stated as follows

Cp =

Theorem A. Let u € C%(R™) be a non-singular positive solution to (Pso). Then, there exist
g € R" and p € R such that u is radially symmetric with respect to xo and monotonically
decreasing. Moreover, it holds

6—n

2 =
o= (2 )™
p* + |z — xo|

The elements in this family are called spherical solutions and they are denoted by g, ;-

Our main result in this manuscript extends Theorem A for the case when the origin is a non-
removable singularity and can be stated as

Theorem 1. Let u € CYR"™ \ {0}) be a singular positive solution to (Psoo). Then, u is
radially symmetric with respect to the origin and monotonically decreasing. Moreover, there exist
ap € (0,ar) and T € [0, Tq,] such that
6—n
u(z) = || 2 ve(—In|z|+T).

Here v, is the unique periodic bounded positive solution to the sixth order IVP (or Cauchy problem)
below

v(©) — K4v(4) + ng(z) — Kov + cnvz_tg =0 in R (O o)
v(0) = ag, vP(0)=ay, vW(0)=ay, and v (0) =13 (0)=v0)(0)=0. >
Here Ky, K9, Ky are dimensional constants (see (2.2)), ag,as depend on ag, and a, = Kén_G)/lz.

The elements in this family are called (sizth order) Emden—Fowler solutions and are denoted by
ua,T-

Remark 2. Notice that the assumption that our solutions are classical is not restrictive. In
fact, by a standard regularity lifting technique from [6], one can show that any weak solution
u € H3(R™\ {0}) to (Ps,00) also salves (Pgo) in classical sense, that is, u € C®(R™\ {0}) or even
smooth uw € C°(R™\ {0}) and (Ps o) holds pointwise.
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Recently, T. Jin and J. Xiong [23] used variational techniques to prove existence of solutions to
(P6,00). In fact, they considered a integral equation generalizing (Pg ), which includes non-local
versions of the nonlinearity (see also [8]). The full classification result for the critical fractional case
is still unknown. For other ranges of the power-nonlinearity, S. Luo et al. [29] proved a monotonicity
formula for solutions to related sixth order equations. We refer the reader to [10,11,18-20,33,38,39]
for more results on this subject.

Eq. (Psoo) arises naturally in the study of the lack of compactness for the critical Sobolev
embedding. Besides, its applicability in PDEs, our result has also a connection with differential
geometry. In this language, (Ps o) is the locally conformally flat version of a more general
geometric equation, the so-called sixth order GJMS equation [12, 16], which is driven by the
PS the sixth order GJMS operator. In this geometrical language, our main results classify the
metrics with constant (sixth order) Q%-curvature on (S™ \ {p, —p}, go), where go is the standard
round metric on the punctured unit sphere and ng = 275n(n* — 20n2 + 64). Indeed, the metric

g = u%(=6) g has constant QS-curvature if, and only, if u € C°°(S™ \ {0}) is a (smooth) positive
solution to the geometric PDE

nt+6
Pgu=coun-s in S"\{p,—p},
where

Pfo _ <—Ag0+ (n—6£{(n+4)> <_Ago+ (n—4l(n+2)> <_Ago+w>'

For more details on this subject, we refer the interested reader to [5,9,13,24] and the references
therein. It is also worth mentioning the relations of (Pg o) with tri-harmonic maps [3].

Remark 3. In [23], the asymptotic behavior of solutions to a local equation on the punctured ball
of radius R > 0 is studied. More precisely, it is proved that solutions to

(~APu=cuns i Bg\{0}, (Po.r)

satisfy

u(z) = (14+o0(1))ug(z) as x—0,
where ug € C*(R™\{0}) solves (Pg.o0). Our main theorem may be applied to improve the asymptotic
behavior of solutions to (Pe,r) near the origin. Based on [1,25, 31], we conjecture that assuming
—Au >0 and A%u > 0, one can find By > 0 such that

u(z) = (1 + O0(z|))ug(z) as z — 0.
A result like this have direct implications on the study of the (sizth order) singular GJMS.

Now let us compare our results to the ones in the fourth and second order cases. First, we
consider positive solutions u € C*(R™ \ {0}) the fourth order critical equation
n(n —4)2(n? —4) nta

(—A)*u = G un— in  R™\ {0}, (Pa,00)

where n > 5, A2 = Ao A is the bi-Laplacian. Notice that (Pyno) is critical in the sense of the
compact Sobolev embedding H?(R™). On this subject, we should mention that when the origin
is a non-removable singularity, C. S. Lin [28] (see also [37]) obtained radial symmetry for positive
solutions to (P4 o) using the asymptotic moving planes technique. Recently, Z. Guo, et al. [17]
proved the existence of periodic solutions by applying a mountain pass theorem and conjectured
that all ODE solutions should be periodic. Later on, R. L. Frank and T. Kénig [15] answered this
conjecture, obtaining more accurate results concerning the classification for entire singular positive
solutions to (P4,ec)-
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Theorem B. Let u € CHR"™\{0}) be a positive solution to (Pyeo). Then, u is radially symmetric
with respect to the origin and monotonically decreasing. Moreover,

(i) Assume that u is non-singular. Then, there ezist xo € R™ and p € R such that

4—n

@) ( 2 )T
UNT) =\ 55 .
w2 [z — xol?

(ii) Assume that u is singular. Then, there exist ag € (0,[n(n — 4)/(n?* — 4)]*~*®) and
T € [0,Tg,] such that

u(@) = Ja] 2" va(~Infa| 4+ T),
where v, 1s the unique periodic bounded solution to the fourth order IVP below

{’U(4) o n(n—24)+8,u(2) + n2(7iﬁ—4)2v _ 71(71—4)2(712—4),L)Z—j21l —0 in R

16

Ciyo0
v(0) = ag, vP(0)=ay, and oM (0) =01 (0)=0. (Cacc)

Second, we consider positive singular solutions v € C?(R™ \ {0}) the second order critical
equation below

Au="UTHEE e R {0, (P2,00)

where n > 3, A is the Laplacian. Let us notice that (Ps) is critical in the sense of the compact
Sobolev embedding of H!(R™). All the aforementioned classification results were inspired by the
classical theorems of R. H. Fowler [14] (see also [4]) and T. Aubin [2] and G. Talenti [34] on
the study of conformally equivalent metrics with constant scalar curvature, the so-called Yamabe
problem.

Theorem C. Let u € C?(R™\{0}) be a positive solution to (Paeo). Then, u is radially symmetric
with respect to the origin and monotonically decreasing. Moreover,

(i) if u is non-singular, then there exist xo € R™ and p € R such that

2—n

2 =
u(r) = <ﬁ> ’
p* + |z — xo|

which are called spherical solutions and they are denoted by z -
(ii) if u is singular, then there exist ag € (0, [(n — 2)/n]™=2/*) and T € [0,T,,] such that
u(@) = [2] " va(~ In o] + T),

where v, 1s the unique periodic bounded solution to the second order IVP below
n+2

o® LBy 2D — 0 i R
v(0) =ag and oM (0)=0.

(CZOO)

Let us describe our strategy to prove Theorem 1. First, we prove integrability and
superharmonicity properties for solutions to (Pg ), which we use to perform an integral sliding
technique and prove that singular positive solutions to (Ps ~) are radially symmetric. Second, we
perform a change of variables to transform (P o) into (Og ) a sixth order IVP with constant
coefficients, which can be decomposed into three second order problems satisfying a maximum
principle. This allows us to define a Hamiltonian energy that is conserved along solutions, which,
we use to prove some qualitative properties for positive solutions to (Og o). Third, we use a
two-parameter shooting technique to finish the proof of our classification result. By undoing the
Emden—Fowler change of variables, this can be easily translated into a result about solutions to

(Pé,00)-
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The main difficulties in our approach are the lack of maximum principle for higher order
operators and the possibly chaotic behavior enjoyed by solutions to ODEs driven by these
operators. The former can be overcome either by an integral representation formula or a
decomposition into second order operators. To deal with the later issue, we use the conservation
of the energy and qualitative properties previously proved. These properties assure that this sixth
order ODE behaves as a second order one.

These (Pe,00): (P1,00), and (P2o) are particular cases of a more general class of equations, which
we describe as follows. For any m € NT, we are interested in classifying (smooth) singular positive
solutions u € C?™(R™ \ {0}) with n > 2m := N (which will always be assumed so forth) to the
following family of critical even order tri-harmonic PDEs

(—A) "y = cn,NU% in R"™\ {0}. (PN,s0)

Here (—A)™ is the m-poly-Laplacian and ¢, y is a normalizing constant given by

N2 N\ 2
cn,N=2NF<n—Z >F<n4 > ; (1)

n+tN ._
n—N "

where I'(s) = fooo 757 1e~7dr is the standard Gamma function. The power
in the sense of the compact Sobolev embedding H™(R™).

We remark that almost all of our technical results in this manuscript extend to this class of even-
order poly-harmonic operators. In this regard, a classification result for entire singular solutions
to (PN,s) in the sense of Theorem 1 is believed to be true. Let us state this conjecture as follows

2y, —11is critical

Conjecture 4. Let u € CN(R"™\ {0}) be a singular positive solution to (Pgo). Then, u is
radially symmetric with respect to the origin and monotonically decreasing. Moreover, there exist
ag € (0,ay, ) and T € [0, Ty,] such that

u(z) = ]a:\%?)a(ln lz| +T).

Here v, is the unique periodic bounded positive solution to the following higher order IVP

{Z;’Lo(—l)jHK%N(")U@j) = Cn,NU% in R

v)(0) =a; and v V0)=0 for j=1,...,m. (Crvco)

Here Koj n(n), a;’N > 0 are dimensional constants for all j = 1,...,m, namely

n—N
a;,N =K,*M  and Kyjn(n) =o; <:|:\ [AiN(n),.. .,:I:\/)\mN(n)) ,

where o are the j-th harmonic polynomial and

n—N+4j

are the indicial roots of the constant coefficients ODE operator.

We explain the plan for the rest of the manuscript. In Section 2, we introduce some
definitions and prove some preliminary results that will be used subsequently, such as integral
representation formulas, Kelvin transform, radial Emden—Fowler coordinates, decomposition
result, and conservation of energy. In Section 3, we apply the integral moving spheres method to
prove that solutions to (Ps ) are radially symmetric. In Section 4, we perform some ODE analysis
to prove qualitative properties for solutions to (Og ), which we use to perform a topological
shooting method and classify these solutions. In Section 5, we combine the energy conservation,
the radial symmetry, and the ODE analysis to prove Theorem 1.
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2. PRELIMINARIES

This section aims to introduce some necessary background definitions and results for developing
the sliding methods and the asymptotic analysis that will be later used in this manuscript.

2.1. Integral representation. Now we use a Green identity to transform the differential equation
(P6,00) into an integral equation. In this way, we can avoid using the classical form of the maximum
principle, and a sliding method is available [26,32], which will be used to classify solutions.

The next result uses the Green identity to convert (Pg o) into an integral system.

Proposition 2.1. Let u € C%(R™) be a positive solution to (Pgo). Then (up to constant), it
follows

uw) = [ o=y i R0, (Zo)
Proof. Tt directly follows from [8, Theorem 4.3] (see also [7]). O

2.2. Kelvin transform. Later we will employ the moving spheres technique, which is based on
the 2m-order Kelvin transform. For this, given o € R™ and p > 0, we need to establish the
concept of inversion about a sphere dB),(z¢), which is given by Z, ,(¥) = 2o + Kay u(2)* (@ — 20),
where Ky, () = p/]x — 0.

Definition 2.2. For any u € C%(R"\ {0}), let us consider the sizth order Kelvin transform about
the sphere with center at xg € R™ and radius p > 0 defined by

Uz, () = Kwo,u(x)n_ﬁu (Zag, () -

The next proposition states that solutions to (Pg ) are invariant under the Kelvin transform.
This holds because of the conformal invariance enjoyed by this family of critical equations.

Proposition 2.3. If u is a solution to (Ps o), then uy, , is a solution to

(—A)?’UIOM = f(uzo,p) in R™\{0,20}.
Proof. Tt directly follows by using [36]. O
2.3. Radial Emden—Fowler coordinates. This is section is devoted to constructing a change
of variables that transforms the singular PDE (Pg ) problem into the nice ODE problem with
constant coefficients. Here we only consider functions that are radially symmetric, that is, u = u(r)

with 7 = |z|. Later on, we will prove that this in fact holds for positive singular solutions to (P o)
(see Proposition 3.1).

Definition 2.4. For any u € CS(R™\ {0}) positive (radial) solution to (Ps ), we define the (sixth
order) Emden—Fowler (or logarithmic-cylindrical) change of variables given by

u(t) = \x]%u(r) with ¢ =1Inr

—_n

The power v, = 6T is chosen by conformal invariance.

This change of variables is used to transform the singular PDE (Pg o) problem into the nice
ODE problem with constant coefficients

v® — KW 4 K@ 4 glv)=0 in R. (O6)
The nonlinear term is g : C(R) — C®(R) is defined as

g(v) := f(v) — Kov where f(v):= cn]v]nl_fﬁfu.
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The operator P32, : C%(R) — C(R) is the so-called (sixth order) logarithmic cylindrical Paneitz
operator (restrlcted to radial functions), and is given by

Py =09 — K0 + K>0? — Ko, (2.1)
where
1
Ko = 2(n = 6)*(n—2)*(n +2)?,
1
Ky = 1—6(3714 — 24n® + 72n% — 96n + 304), (2.2)
1
Ky = Z(3n2 — 12n + 44).

2.4. Decomposition. We prove a decomposition result for the tri-Laplacian operator written in
Emden—Fowler coordinates. Namely, we decompose Prad into a composition of three second order

operators satisfying a comparison principle. In what follows, given A > 0, we denote L) := 8}2) -\
We start with the definition of indicial roots for a linear operator.

Definition 2.5. Let L € (C%(R))’ be a linear operator. The indicial roots of L at +oco (resp. —oo)
are X € R for which there is a non-zero function v € C(R) and X' < X (resp. N > \) such that
e NL(eMu(t)) — 0 as t — +oo (resp. t — —o0). We denote by (L) C R its set of indicial roots.

Remark 2.6. Notice that when L € (C5(R))’ has constant coefficients, that is, L = Z?:o k:jat(j ), it
follows that T(L) = {pr(0)} ™1, where pp(A\) = Z?:o kN is the indicial polynomial. In particular,
a direct computation shows that the indicial equation associated to (2.1) are given by

PA(Pha) = A° = KA + Ko)? — Ko =0, (2.3)
which have a strictly positive discriminant, that is,
discy(p) := —2TKZ — 4K3 — AK? + K?K2 + 18K, K3, K( > 0. (2.4)

This in turns guarantees the existence of distinct real Toots /A1, v/ A2, v/ A3 € R solving (2.3).
Next, we prove a decomposition of Pf’ad into three second order operators.
Proposition 2.7. The following decomposition holds
Bl =Ly 0Ly, 0Ly, (2.5)

where

_ _9 2
V) A2="2 . and Ag,:";.

Proof. Initially, recall that for ¢ > 6 — n, the following formula holds in the sense of distributions,

(2.6)

3 3

(~ 8 (ef) = [[(a —2/) [[(a— 2 + mlzl® in R™\ {0},
J=0 J=1

which implies that {u;};cq1,.. 61 C CS(R™\ {0}) is a basis for the space of radial solutions to the

homogeneous tri-harmonic equation, where w;(|z|) = |2|% with ¢; = 2(j — 1) if j = 1,2,3 and

2(j —m) —n if j = 4,3,5. In other terms, (—A)3u; = 0 in R™\ {0} for anyj =1,2,3,4,5,6.

Hence, under the Emden-Fowler change of variables, we have that {v,v3, v} C C’6( ), where

v;—L(t) — VN with )\J = q; —p for j = 1,2,3, forms a basis for the space of solutions to

(Og), that is, {vF,v3,v3} C CO(R) is linearly independent and P3 vf = P3 03 = P3 03 =0
in R. Then, the set of indicial roots of Z(P3 ) = {£v/A1,£vA2, £v/A3} C R. From this, it is
straightforward to check that (2.5) holds. O
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2.5. Conservation of energy. In this section, we find a quantity that is conserved along solutions
to (Og). These will be called the Hamiltonian energy associated with the sixth order ODE (Og).

Let us start with the classical definition of Hamiltonian energy for a solution v € C%(R) to (Op),
which is obtained by multiplying (Qg) by v(!) and integrating by parts.

Definition 2.8. For any real function v € C®(R), let us define its Hamiltonian energy (with
respect to (Og)) H : R x CO(R) — R by

Ht,v) = <v<s>v<l> oy 4 %v@»?) K, <v<3>v<1> _ %M) + 52,07 Ko ), @)

where

K n
G(v) :=F(v) — 70112 and F(v):= én‘v‘viﬁ

and
(n — 6)%(n* — 20n2 + 64)

Cp = .

128

Remark 2.9. Notice that the real roots of G are the equilibrium solutions to (Og), namely
v=0 and v=+a), (2.8)

where

(2.9)

o KO%G <(n—6)(ng2)(n+2)>n76.

Next, it is direct to prove that this energy is conserved along with solutions to (Og). We
emphasize that this conservation is a local property and valid on the maximal interval of existence
and does not require any a priori boundedness assumption.

Proposition 2.10. If v € C%(R) is a positive solution to (Og), then

0 _
EH(t, U) =0.

In other terms, there exists H, € R such that
H(v)(t) = H(t,v) = H(v) := Hy. (2.10)
Proof. 1t is a direct computation. O

Remark 2.11. [t is convenient to write the Hamiltonian energy as

1
H(v) = §v<3>2 + &0 + &) 1 G), (2.11)
where
& (v) =0 — KB + %v(l) and & (v) = —o® + %v(z) (2.12)

are the so-called auziliary energy summand functions.
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3. RADIAL SYMMETRY

In this section, using the integral moving spheres technique, we prove that singular solutions
to (Ps o) are radially symmetric. The main ingredient in the proof is the integral version of
the moving spheres technique contained in [21-23,26]. For this, we are based on the conformal
invariance enjoyed by solutions to (Pg ) in Proposition 2.3.

Proposition 3.1. Let u € C(R™\ {0}) be a singular positive solution to equation (Pg ). Then,
u 18 radially symmetric about the origin and monotonically decreasing.

Before we give the proof of the rotational symmetry for singular solutions to (Ps ), we need
to establish a set of preliminary results.

3.1. Integrability. We show that any singular positive solution to (Pg ) is distributional.

Lemma 3.2. Let u € CS(R"™ \ {0}) be a positive singular solution to (Ps). Then, it holds
n+6

u € Lﬁ(R"). In particular, u is a distribution solution to (Pp o).

Proof. For any 0 < € < 1, let us consider 7. € C*°(R") with 0 < n. < 1 satisfying

0, ifjz|<e
= 3.1

and |[DUn,| < Coe7 inR™ for j = 1,2,3,4,5,6 and some Cy > 0. Define &, = (175)”7%. Multiplying
(P6.00) by &, and integrating by parts in B, with » € (1/2,1), we obtain

_ A3
- f(u)fedx—/ U( A)’¢.de.

n

One can verify that there exists C7 > 0 such that
n—6

n—6
[(=A)%&] < Cre™%nc X(egjuicaer = Cre P68 X e ul<2e)
which, by Holder’s inequality, gives us

[ ut-ayeds

n—6

< 016_6/ ufl 0 da
{e<|al<2)

n-+6
< 6'16_6&"%% (/ f(u){eda:>
{e<|z|<2¢}

n—

(=2}

(=2}

Thus, it follows

n—=6

| s < 6 ( J o }f(U)Sedw> ,

from which one can find a constant Cy > 0 (independent of €) such that

f(u)éeda < Cs.
R’!L

Now letting ¢ — 0, we conclude that u € Lz_fg(]R”) and the integrability follows.
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For any nonnegative ¢ € C2°(R"™), we multiply (Ps,0) by 5 = n-¢, where 7. is given by (3.1).
n+6
Then, using that u € Ln_té‘(R") and integrating by parts, we get

| uap oo = [ . 3.2)

By a direct computation, we find that A%(n.¢) = n-A3¢ + 1., where
Ve = 6(Ve, VA2¢> - 15A776A2¢ +20(VAn., VA¢) — 15A277€A¢ + 6<VA277€7 Vo) — ¢A377€'

Furthermore, using Holder’s inequality again, one can find C'5 > 0 such that

n—=6
nF6
/ updr| < C3 (/ f(u)dx) —0 as £—0.
" {e<lz|<2¢}

Finally, letting ¢ — 0 in (3.2), and applying the dominated convergence theorem the proof
follows. O

3.2. Superharmonicity. We show that singular positive solutions to (Ps~o) satisfy a
superharmonicity property for lower orders powers of the Laplacian.

Lemma 3.3. Let u € CS5(R™ \ {0}) be a singular positive solution to (Pso). Then, u is a
superharmonic in the distributional sense, that is, ¢ € C°(R™), one has

/ Aul?¢dz <0 for all ¢ € C(R™).

Moreover, in the classical sense

—Au>0 in R"\ {0} (3.3)
n+6
Proof. Proceeding similarly to Lemma 3.2, one can prove that u € L' °(R"). Let n. € C*(R")

be the cut-off function given by (3.1) and ¢ € C2°(R™) be a nonnegative test function. Then, by
multiplying (Pgc) by 7-¢, and integrating by parts, we get

0> [ nosae= [ %m0 ude = [ Au(@on + ) s

where ¢° := 4(VA@, Vn.) + 6A¢An. +4(Vp, VAn.) + ¢A%n.. Notice that ¢°(2) = 0 when |z| < ¢
or |z| = 2¢, and |A¢®(z)| < C1e75, for some C; > 0. In addition, since n — 6 — M:—J:GG) > 0, the
following estimate holds

/ Auctdzx

< / u|Act|dx

n+6 _
< Ce / f(u)dx a"(l_ﬁ)
{e<|z|<2¢e}

_ _n(n76)
<ClEe" T 50 as e — 0,

which implies

AuA¢dr = lim (AuA2§€da: + n-A¢Au) do = of (u)dx < 0.
Rn e—0 Rn Rn
Thus, —Aw is superharmonic in the whole space R™ in the distributional sense, which gives the

first part of the proof.
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To prove the second statement, given 0 < & < 1, let us consider u° := —Au + ¢. Using
Lemma 3.2, there exists a constant Co > 0, depending only on n and s, such that for all |z| > 4,
it holds

5
Dl DWu(z)| < Cs,
j=0

which yields that lim ;o |[Au(x)] = 0. Whence, for any 0 < ¢ < 1, there exists R. > 1 such
that u® > ¢/2 for |x| > R.. Finally, using that u° is superharmonic in R” in the distributional
sense, we have that u® > 0 in R™\ {0}, which, by passing to the limit as & — 0, provides —Au > 0
in R™\ {0}. The last inequality concludes the proof of the lemma. O

Lemma 3.4. Let u € CO(R™\ {0}) be a singular positive solution to (Pseo). Then, —Au is a
superharmonic in the distributional sense, that is, ¢ € C°(R™), one has

/ A*uA¢dz >0 for all ¢ € C°(R™).

Moreover, in the classical sense
A% >0 in R™\{0}. (3.4)

Proof. The proof is similar to the one of Lemma 3.3, so we omit it. O

Remark 3.5. Notice that these superharmonicity identities in (3.3) and (3.3) can be respectively
rewritten in radial Emden—Fowler coordinates (see Subsection 2.3) as follows

(n—6)(n— 4)1)

1 <0

v@ + (n —5)oM) +

and
(n—6)(n—4)(n—2)

v® +2(n—3)0® — (3n2 — 18n + 22)0®) + (n® — 9n? + 22n — 12)0) + 16

v > 0.

In addition, we have the decomposition

@ (v + V;)U(Q) + (v, v >0,

n

where

vt o= \/5 +/2n* — 24n3 + 88n2 — 96n + 16.

3.3. Integral moving spheres method. We prove the main result of this subsection, namely,
the radial symmetry of the blow-up limit solutions.

Lemma 3.6. Let u € CS(R™\ {0}) be a positive singular solution to (Ps ). For any x € R™,
z € R™\ ({0} UBy(x)) and p € (0,1), it holds that u(z) — (u)z,u(2) > 0.

Proof. Let u be a positive singular solution to (Ps ). Using the identities in [26, page 162], one
" po \"° 6 6
(f) / | Zepu(2) — y" " fuly))dy = / |z —y|"™7 fu(y))dy
|z — =| ly—z|>p ly—z|<p
and .
(2) [ E - ay= [y ),
|2 — 7] ly—z|<p ly—a|>p
which yields

(W) = [ 12 =0 fulp)y for = € To, (R, (3.5)
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Consequently, for any € R” and p < 1, we have that for z € R" \ {0} U B,(z),

u(z) = (Weu(z) = / E(z,y, 1, 2) [f (u(y)) = f(a,u(y))] dy,

ly—z|>p

where

6—n
_ Z—X 6—
Bloyzn) = | =y = (E22) g0 -y (3.6)
is used to estimate the difference between v and its Kelvin transform u, ,. Finally, using its decay
properties, it is straightforward to check that E(x,y,z,u) > 0 for all |z — 2| > p > 0, which
concludes the proof. O

Next, let us introduce the critical sliding parameter as the supremum for which an inequality
relating a component function and its Kelvin transform is satisfied.

Definition 3.7. Given x € R", let us define
pi(x) =sup{p >0: (u)g, <uin R"\ B,(x) for any 0 < r < p}. (3.7)
Since u is such that —Au > 0 and A%u > 0, we get p*(x) > 0.

The next lemma is essentially the moving spheres technique in its integral form. This method
provides the exact form for any blow-up limit solution to (Pg ), which depends on whether the
critical sliding parameter p*(z) is finite or infinite.

Lemma 3.8. Let u € CS5(R"\ {0}) be a positive singular solution to (Ps o), 2 € R™ and p*(z) > 0
given by (3.7). The following holds:

(1) if p*(z) < oo is finite, then uy () = w in R™\ {0,z}.
(ii) of p*(z) = oo, for some xg € R™, then p*(z) = oo for all x € R™\ {0}.

Proof. Without loss of generality, we may assume zo = 0. Let us fix p* = p*(0) and (u), = (u)o,u-
By the definition of p*(x) > 0, we have (u),+(z) < u(z) for all |x| > p*. Thus, by (3.5), with z =0
and p = |z| > p*, and the positivity of the kernel E(0,y, z, 1) given by (3.6), either u,-(y) = u(y)
for all |z| > p* or (u),~(y) < (u)(y) for all |z| > p*. In the former case, the conclusion easily
follows. In the sequel, we assume that the last condition holds. Hence, the integral representation
in Proposition 2.1 yields

M* n—~6
>ADM<L‘GQ> >UW@D—ﬂw%wWM>Q

which implies that there exists e1 € (0, 1) satisfying u(z) — (u),» (2) = 1|2|°7™ for all |2 > p* + 1.
Moreover, there exists g2 € (0,¢1) such that, for |z| > p* 4+ 1 and p* < p < p* + 2, we find

liminf 2" [u(2) — (u),+ (2)] = lim inf /| ‘ 2" B0, y, 2, 1) [f (u(y)) — fluw(y)] dy
ylzp*

€1

5 2|87 (3.8)

(u— (W) (2) = exle* ™ + (W = (W) (2) =
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*

Whence, for any € € (0,e2) (to be chosen later), p* < u < p* +¢, and p < |y| < p* + 1, we have

(u— (w)ye) (2) = /| B2 L) = o)y
ylzp
pr<lylsp+1

+ / E(0, 4,2, p) [ (uly)) — Flun(w))] dy.
w*+2<]y[<p*+3

Now using (3.8), there exists d; > 0 such that f(u(y)) — f(uu(y)) = 61 for p* +2 < |y| < p* + 3.
Since E(0,y, z,u) = 0 for all |z| = u and

VeB(0,y,2,0) 2], = (n=4)z = ylP 7" (|2 = [y*) >0 forall p"+2 <yl <p*+3,

where §o > 0 is a constant independent of . Then, there exists C; > 0 such that, for
PSS s pt + e, we get

|fu(y)) = flu= )] < Ci(p—p*) < Cre forall p" <p <yl <p”+1
Furthermore, recalling that p < |z| < pu* 4 1, one can find Cy > 0 such that

n—6
_ _ i _
[ Bopamas|f =" = ) ol (1) T -l
p<ly|<p* p<lyl<pr+1 ||

< C2[Zu(z) — 2] + Ca([2] — p) < Caof|2] = ),
which, provides that for small 0 < e < 1, p* < p < p* + ¢, and p < |z| < p* + 1, it follows

(1= () (2) > ~Coe [

p<lyl<pr+1

> 5152/ dz — CQE (‘Z’ — M)
p42<y|<p+3

= 0.

B, 0)dy +8182(12| ~ ) [ dy
pr+2<] 2| <p* 43

This is a contradiction to the definition of p*(z) > 0. Therefore, the first part of the lemma is
established.

Next, by the definition of p*(z) > 0, we know that u, ,(2) < u(z) for all 0 < p < p*(x), with
|z — x| > p; thus, multiplying it by |2|*~%, and taking the limit as |z| — oo, yields

(= IIHF inf |2|""CU(2)| = " CU(2)| forall 0< p< p*(x). (3.9)
Z|—0o0
On the other hand, if u*(x) < oo, multiplying the identity obtained in (i) by |z|"~°
to the limit when |z| — oo, we obtain
L= |Zl|ii>noo 12|70 f(u(2)) = p*(20)" O f(x0) < o0. (3.10)
Finally, by (3.9) and (3.10), if there exists ¢y € R™ such that p*(z¢) < oo, then p*(z) < oo for all
z e R™ U

and passing

Proof of Proposition 3.1. Using Lemma 3.8, we can apply [21, Proposition 2.1] to conclude that
singular positive solutions to (Pg o) are radially symmetric with respect to the origin. The proof
that they are radially monotonically decreasing will be given in the next section (See Proposition 4.1
(iii)). 0
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4. ODE ANALYSIS

This section is devoted to the classification of (positive) solutions to the problem (Og). The
positivity will not play a role here. Our strategy here is inspired by the methods in [15,17, 35]
and relies on the decomposition in Proposition 2.7. It is outstanding to recover such properties for
solutions to sixth order ODE with possibly chaotic dynamical behavior near equilibrium points.

The next classification result will be the key part of the proof of our main theorem

Proposition 4.1. Let v € CS(R) be a solution to (Og).
(i) Then,
iPRf lv| < a (4.1)
with equality holding if, and only if, v is a nonzero constant function.
(ii) Conwversely, if ag € (0,ar), then there exists a unique (up to translations) bounded solution
v € CSR) to (Og) such that infg [v| = ag. This solution is periodic, has a unique local
mazimum and minimum per period, and is symmetric with respect to its local extrema.

(iii) Moreover, if v is positive, then v —~,0 <0 in R.
We begin with some preliminary remarks.

Remark 4.2. Notice that v =0 and v = a},, where a, > 0 is given by (2.9) are exactly the only
three constant solutions to (Og). Moreover, if v(-) is a solution to (Og),

e then v(—-) also is a solution to (Og) since it contains only even order derivatives;
e then —v(-) also is a solution to (Og) since G is odd;
e then v(-+T) for any T € R is also a solution to (Og) since it is autonomous.

To prove our main proposition in this section, we will need some auxiliary results quantifying
the intuition that the set of bounded solutions to the higher order equation (Og) behaves in some
respects similar to the set of solutions to a second order equation. As we pointed out before, for
this it is crucial that the relation (2.4) holds.

4.1. Boundedness. The following lemma states that solutions to (Og) are bounded, which is one
of the key new results in this manuscript. The proof is based solely on the conservation of energy,
as so is independent of the rest of the argument.

Lemma 4.3. Let v € C%(R) be a solution to (Og). Then v is bounded.

Proof. Initially, by transforming 7 = —t, without loss of generality it is enough to prove that v is
bounded on [0, c0).
Indeed, for any solution v € C%(R), we set

Zi(v) = 20 () n 22 W), (4.2)

where
ZPw) ={t>0:00@) =0} and zP () ={t=>0:vP ) =0}

In what follows, we have two cases to study:
Case 1. Z,(v) is bounded.
In this case, using Lemma 4.8, we get that v is monotone for ¢t > 1 large enough, and thus admits
a finite limit a4 := lim;_,o v(t) < co. Therefore, v is bounded on [0, c0).

Next, we show that the other possibility cannot happen.
Case 2. Z,(v) is unbounded.
Now, since F(v) — oo as |v|] — oo, there exists an R > |v(0)| such that F(v) > H, for
all Jv| > R. Also, notice that |[v] < R in [0,00). Indeed, by contradiction assume that
Mg :={t>0:|v(t)| > R} # @. We set t* := infp, M.
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In addition, because |v(0)| < R, we must have t* > 0 and |v(¢t*)| = R. Replacing v(t) by —uv(t) if
necessary and observing that it does not change the set Z, (v), we may assume that v(t*) = R.
Hence, we also find v (#*) > 0 and v® (t*) > 0. Using that Z,(v) is unbounded, we have that
—00 < T := inf(Z, (v) N (t*,00)) is well-defined, which, by continuity of v and v®, yields
vM(T) = v®(T) = 0 and min{v™, @} > 0 in [t*,T]. Consequently, we get v(T) > v(t*) = R,
from which we deduce

H)(T) = 0O + F(D) > Fu(T) > K,

which is a contradiction with the energy conservation (2.10) in Proposition 2.10.
The proof is finished. U

4.2. Comparison. The first result states that any bounded entire solution to (Og) is uniquely
determined by only two (instead of 6) initial values.

Lemma 4.4. Let vi,v3 € C%(R) be bounded solutions to (Og). If v1(0) = ve(0) and fugl)(O) =
fuél)(O). Then vy = vs.

Proof. Let vi,v2 € CS(R) be bounded solutions to (Og) which satisfy the initial conditions

v1(0) = v2(0) and v&l)(O) = vgl)(O). By interchanging v, and vy or replacing vy (t) and va(t) by
v1(—t) and vo(—t)), we may assume without loss of generality that vgj) (0) > véj) (0) for j = 2,3,4,5.
Suppose, by contradiction, that vy #Z vy. Then, by standard uniqueness result for ODEs, we
have that vij)(O) # véj)(O) for j = 2,3,4,5. In both cases, we deduce from our hypotheses on the
initial conditions v(t) > w(t) on (0,7) for some sufficiently small 0 < 7 < 1.
Let {A1, A2, A3} C R be given by (2.6). Using the decomposition in Proposition 2.7, let us set
the auxiliary functions {®;, ®o, @3} € C(R) defined as

¢y :=Ly, Py:=Ly oLy, and P3:=1Ly oLy, 0Ly,. (4.3)
By the contradiction assumption, we have
(Po(v1) — Po(12))(0) =0  and  (Pa(vy) — Po(v2)) M (0) =0 (4.4)
and
(®1(v1) — ®1(v2))(0) =0 and  (Dy(v1) — Py (v2)) M (0) > 0. (4.5)

Also, using that vq and vy satisfy (Og), we find

—L)\S((I)g(vl) — @2(’02)) = f(’l)g(t)) — f(?)l(t)) for all teR.
Next, using that vi(t) > wva(t) on (0,7) and the strictly monotonicity of since the function
u f(u), we get
— L)\B((I)Q(’Ul) — q)g(l)g))(t) >0 for all t e (0,7’). (46)
Hence, from (4.4) and (4.6), we easily find that (®o(vy) — P2(v2))(t) > 0 for t € (0,7), or
equivalently,
— Ly, (P1(v1) — @1(v2))(t) = Pa(v1) — Pa(ve)(t) >0 forall ¢e (0,7). (4.7)

Whence, from (4.5) and (4.7), we easily find that (®1(v1) — ®1(v2))(t) = 0 for ¢t € (0,7), or
equivalently,

(01 — )@ (t) = Mi(vg —v2)(t) >0 forall te(0,7). (4.8)
By the hypotheses, we have (v; — v2)®(0) > 0, which combined with A3 > 0 and (4.8) implies
that (v; — v9)M(¢) > 0 for all t € (0,7). Thus, v; — vy is strictly increasing on (0,7), and since
0 < 7 < 1 was arbitrarily small such that vy — v > 0 on (0,7), we conclude that v; — vy > 0 for
all t € R.
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Repeating the above arguments for the interval (0, 00) instead of (0,7), we get from (4.8) that
(v1 —v9)(M) is positive and strictly increasing on (0, o0), which clearly contradicts the boundedness
of v1 — vo. This shows that v1 = v9, and concludes the proof of this lemma. O

As a consequence, we have the following symmetry result

Corollary 4.5. Let v € C5(R) be a bounded solution to (Og).
(i) If vW(tg) = 0 for some to € R, then v is symmetric with respect to to, that is
v(to +1t) =v(to —t) for allt € R;
(i) If v(to) = 0 for some tyg € R, then v is anti-symmetric with respect to to, that is,
v(tg —t) = —v(to+t) for all t € R.
Proof. To prove (i), notice that since (Og) is autonomous, we may assume ty = 0. Moreover,
if v is a solution to (Og), then 0(t) := v(—t) also is. Hence v(0) = ©(0) and, by assumption,
v (0) = 91 (0) = 0, which by Lemma 4.4 gives v = 2.
To prove (ii), we use the same strategy. O
With a similar proof, we can also prove the following comparison

Lemma 4.6. Let v1,v3 € CS(R) be bounded solutions to (Og). Suppose that

Then v1 = vs.
Proof. Follows the same strategy as in Lemma 4.4 O

4.3. Asymptotics. This subsection is devoted to the study of some asymptotic properties for
solutions to (Og).
First, it is convenient to introduce the following definition

Definition 4.7. For any v € CS(R) solution to (Og), let us define its asymptotic set by

A(v) = {€ e RU{£oo}: t_lggloofu(t) = €} .
In other words, A(v) is the set of all possible limits at infinity of v.

The content of the following lemma shows that (Og) does not possess a solution that tends to
either plus or minus infinity at infinity, that is, a solution that blows up does it in finite time.

Lemma 4.8. Let v € C5(R) be a solution to (Og). If £+ := lim; 100 v(t) € RU {Fo0} ewists,
then £+ € R.

Proof. Initially, notice that by interchanging v(¢) by v(—t), it is only necessary to consider the
case t — +o00.

Suppose by contradiction that the lemma does not hold. Thus, one of the following two
possibilities shall happen: either the asymptotic limit of v is a finite constant ¢, > 0, which
does not belong to the asymptotic set A, or the limit blows up, that is, {1 = 4o0.
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Let us consider these two cases separately:
Case 1: ¢, €[0,00) \ {0,a},}.
By assumption, we have

tliglo (Kov(t) — f(v(t))) = k, where &:= Koly — f(l1) #0, (4.9)

which implies
Kov(t) — fu(t) = v ) — Ko (t) + Koo (t). (4.10)
Hence, combining (4.9) with (4.10) implies that for any € > 0 there exists 7' > 1 sufficiently large
satisfying
k—e <00 @) — KW (t) + Koo?(t) < k +e. (4.11)
Now, integrating (4.11), we obtain
t

/t(/-a —e)dr < /Tt [U(G) (1) — Keo™W (1) + Kov® (7)] dr < / (k +¢e)dr,

T T
which yields

(k—e&)(t —T)+Ci(T) < v (t) — Kp® () + KooV (1) < (k+e)(t = T) + C(T),  (4.12)
for some C1(T") > 0. Defining ¢ := sup;r [v(t) — v(T")| < oo, we obtain

t
/ Ko@) (r)dr| < |K4l6  and ‘/ Koo (7)dr| < |Ka6,
T
which, by integrating (4.12), gives us
=8 2 4 L) < o@D () < B _ 2 4 R, (4.13)

where L(t), R(t) € O(t?), namely

L(t) = CL(T) (T — t) — | Kald — | K26 + Co(T)
and

R(t) = C{(T)(T —t) + [Ka|0 + [K2|6 4+ Co(T),

for some Cy(T") > 0.
Then, repeating the same integration procedure in (4.13), we find

(’{6_' 6) (t - T)G + O(tﬁ) < ’U(t) < (/{; 6) (t _ T)6 + O(tﬁ) as t — oo. (4'14)

Therefore, since xk # 0 we can choose 0 < € < 1 sufficiently small such that k — ¢ and x + € have
the same sign. Finally, by passing to the limit as ¢ — oo on inequality (4.14), we obtain that v
blows-up and ¢4 = oo, which is contradiction. This concludes the proof of the first case.

The second case requires a suitable choice of test functions, which is inspired in [30].
Case 2: (; = +o0.
Let ¢g € C*°([0,0]) be a nonnegative function satisfying ¢y > 0 in [0, 2),

1, for0<z<1,
¢o(2) = {

0, for z 22,

and, let us fix the positive constants

2169 (2)]
M; ::/ 0 dz for j=1,2,3,4,5,6. 4.15
1= ) Joo) 7 (4.15)
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Using the contradiction assumption, we may assume that there exists 7' > 0 such that for ¢ > T,

it follows
VO (1) = Ko™ (1) + Ko@) (1) = Kou(t) — f(u(t) > 5 f(u(t)) (4.16)

and
0O (t) — KB (t) + Koo / fo(r)dr + CL(T). (4.17)
Besides, as a consequence of (4.17), we can find T > T satisfying
oON(T*) — Kgo®(T*) + Koo (T*) := v > 0.

Furthermore, since (Og) is autonomous, we may suppose without loss of generality that 7" = 0.
Then, multiplying inequality (4.16) by ¢(t) = ¢o(7/t), and by integrating, we find

T T

1
/ (1O D)6(r) = K@ ()o(r) + Kav® (r)o(7)] dr > / v(7)dr,

0 0
where T’ = 2T. Moreover, integration by parts combined with ¢@)(T") = 0 for j = 0,1,2,3,4,5
implies

T/
/ [U(T)qb(ﬁ) (1) — Kqu(1)oW (1) + Kov(r)p? / flo(r)dr +wv. (4.18)
0
On the other hand, applying the Young inequality on the rlght—hand side of (4.18), it follows
o) it o [0 ‘
o(r)|¢V (1) = evn=e (1)p(7) + Ce—=— for j=0,1,2,3,45. (4.19)
(1) 12

Hence, combining (4.19) and (4.18), we have that for 0 < ¢ < 1 sufficiently small, it follows that
there exists C7 > 0 satisfying

GO O (6 <T>‘L+6] L
c — T 5 - T> = flo(r))dr + .
1/0 [ o e e 6 Jy 1)

Now, by (4.15), one can find Cy > 0 such that

~ 1 T
Cy (MGT_i M4T_7 + MQT_i = 6/0 f(U(T))dT. (4.20)

Therefore, passing to the limit in (4.20) the left-hand side converges, whereas the right-hand side
blows-up; this is a contradiction.
For proving the second part, let us notice that

lim H(t,v) = <F(€+) KOﬁ) 0,

t—00
which implies £* = 0 and H(v) = 0. O

Lemma 4.9. Let v € C5(R) be a positive solution to (Og). Assume that v is a non-constant
function, and denote by {si}ren and {Sk}ren its sets of local minimum and mazimum points of
v, respectively. Then, it holds that v(Sk) > a} and v(sy) < a}, for any k € N.

Proof. Let us assume by contradiction that there exists a maximum point ¢t = ¢ty of v such that
v(to) < af and vV (tg) = 0, v (tg) < 0. Notice that from (Og), we have two possibilities which

we descrlbe as follows

Case 1. v(ty) = a’, v (tg) = 0, v¥(tg) = 0, and v(®)(ty) = 0.
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Initially, we observe that v () = 0 and v(® (ty) = 0. Otherwise, without loss of generality, we
may suppose that v (tg) > 0 or vO)(tg) > 0. If, v®)(tg) > 0, by an elementary analysis, we
deduce that there exists § > 0 satisfying v (t) > 0 and v(1)(¢) > 0 in (to, o + ). This contradicts
the fact the point ¢ = tp is a local maximum of v(t). If, v®) (to) > 0, we can apply the same
strategy. Then, by the uniqueness, we get that v(t) = a}, which is impossible.

Case 2. v0(tg) = KW (tg) — Kov® (to) — g(v(ty)) < 0.

Now, notice that for some small & > 0 it follows v(9) (t) < 0 for t € (tg,to +¢) . In this case, we
assume v(® (tg) < 0 and v®)(ty) < 0, which gives us v () < 0, v (¢) < 0 and v® (t) < 0 for
t € (to,to + €). Now, setting

t1 = sup {£> to: v (t) <0, v®(t) <0, and t € (to,f)} .

we have that since v oscillates, it follows that ¢; < oo and either v (¢;) = 0, v®)(¢;) = 0, or
v®)(t1) = 0 because of continuity. This implies that & (v(t;))v™M) (t;) = 0. Moreover, since v(?) is
decreasing in (tg,t1), combined with v(?)(ty) < 0, we obtain that Hy(v)v®) is increasing in (tg,t1).
Putting these together and remembering that v()(ty) = 0, it follows from Proposition 2.10 that
the equality holds

L@ 2 - B2 042 _ L o2

2000 = B2 + Go(n) = 509 (10 + Glelto)),
which yields

Colto)) — (1)) = 3 0O (12) — v (10))” — 20D (12)? > 0.

On the other hand, since v(t1) < v(tg) < a, it is straightforward to see that G(v(t1)) > G(v(to));
this contradicts the last identity. The proof of the first case is finished.

Similarly, we can prove the second part for local minimum points of v, and this concludes the
proof of the lemma. O

The following lemma shows that when a solution tends to a limit monotonically, then it has to
be an equilibrium point.

Lemma 4.10. Let v € C5(R) be a bounded solution to (Pseo). If v is eventually monotone at
infinity, that is, limy_,+ . sign(v™M) (t)) # 0, then

tl}linoov(t) €{0,£a,} and t_lggloofu (t)=0 for j=1,....,5.
In other terms,

Aw) ={0,+a’} and A@YW)={0} for j=1,...,5.

Proof. By interchanging v(t) by v(—t), we may assume that lim; o sign(v™®(¢)) # 0. Then,
there exists the limit
lim o(t) := 4y

t—+o00
and v increases towards £y as t — +oco. Since v is bounded, £y < +o00.
Claim 1: lim;, v®(¢) = 0 and lim;_, v® (t) = 0 as t — +oo0.
Let us define the function Y1 (v) = v® — K;0® + Kov(M | which satisfies T§2) (v) = vWg(v). Now
we have to consider two cases:
Case 1: ¢(M(4y) #0
In this case, ¢/ (v) has a sign for T'>> 1 large enough, that is, either g™ (v) > 0 or ¢ (v) <0
for large T >> 1. In addition, since v(1) > 0, it follows limy_sq sign(Tgm (v(t))) # 0, which implies
that ng) (v(t)) has a sign for 7' > 1 large enough; thus by a comparison principle Y1 (v(t)) also
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does. Furthermore, because Y1 (v(t)) = v°(t) — K4v®)(t) + KovM(¢) has a sign for T > 1 large
enough, we find the the following limit exists:

nm(an_Kw®@+me):a.

t——+o0
Consequently, we get
Ml@w@—Kw@@):&—Kﬂ@ (4.21)

t—4o00
Defining To(v) = v® — K, we get limy_ o Tg)(v) # 0, that is, To(v(t)) has a sign for
T > 1 large enough. Hence, by a comparison principle Yo(v(t)) also does. Moreover, since
To(v(t)) = v (t) — Kqv(t) has a sign for T > 1 large enough, we get that the the following limit
exists

lim <v(2) (t) — K4v(t)) = L.

t——+o0

Therefore, we conclude v(?) (t) — by + K4y as t — oo, which by the boundedness of v, proves that
v (t) = 0 as t — +o0o. Finally, going back to (4.21), we find v (t) — 0 as t — +oo0.
Case 2: ¢V (ly) =0
In this case, we can define T (v) = v® — K0®) 4 %v(l) and To(v) = v — %v(z) and proceed
as before to conclude the proof.

We finished the proof of the first claim

At last, using that v (#) — 0 and v™® () — 0 as t — +o0, one can prove that v () — 0 and
v®)(t) = 0 as t — +o00. Since, we can write (Og) as

0©® = Ko — Kpo® —g(v) in R,

it holds
lim 0O (t) := 5 = g(£).

T—+00

Therefore, v is bounded, we find ¢35 = 0, and thus ¢y, € A(v). By this discussion, it is easy now to
see that A(vU)) =0 for j = 1,2,3,4,5, which concludes the proof of the lemma. O

4.4. Ordering. Now we prove that, as in the lower order cases, the Hamiltonian energy is a
parameter that orders bounded solutions in the (v, v(l))—phase plane.

Our first technical lemma is a sign property for some terms of the Hamiltonian energy associated
to (Og), which will be important in our upcoming arguments. Although, our results ares similar
in spirit to the one in [35, Lemma 5], we provide a shorter proof, which also works in our sixth
order situation.

Lemma 4.11. Let v € C%(R) be a bounded solution to (Og). The following sign identities hold

(i) sign(vM)) = sign(&1(v));
(ii) sign(v®) = sign(Ey(v)).

where E1(v), E(v) the auziliary functions given by (2.12).

Proof. The proof will be divided into three steps.
Step 1. There exist ay, s > 0 (depending only on Ky, K4) such that

0< U0 @0 <&@ and 0 < Uy, (00?2 < E(0)v@),

where
Vo, (v) = v® — Kyo® + a0 and Uy 0, (V) = —o@ 4 agu®.
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Notice that since
Sl(v)v(l) =V (v)v(l) — <— — a1>v(1)2,

and

200 = Wy (0)0 =\ (5 — a2 ),

there exists C1,Cs > 0 (depending only on Ky, K3) such that

E () = \IfLal(v)v(l) + C’lv(l)2 > \IfLal(v)v(l), (4.22)

and
52(1))1)(2) =30, (v)v(2) + Cgv(2)2 > Uy 4, (v)v@), (4.23)

which proves the first claim.

Now, we are left to study the sign of these auxiliary terms.

Let us start with the term related to the first derivative. For this, we observe that ¥y o, (v) can
be written as a positive fourth order operator on v(%).
Step 2. sign(vM) = sign(¥y 4, (v)).

We divide the remaining part of the proof into will be divided into two cases.
Case 1. If v > 0, then U0, (v) = 0.
Let tg € R be arbitrary. We may assume that v(l)(to) > 0. We see from Corollary 4.5 that
Claim 2 holds if v(!) (t5) = 0. We thus assume that v()(tg) > 0. Since v is bounded there exist
—00 <ty < tg <ty < oo such that v (¢;) = vV (t5) = 0 and vV < 0 in (t1,t2). By Corollary 4.5
and Lemma 4.10, we get that v (t;) = v (t3) = 0, which implies ¥y o, (v(t1)) = ¥y 4, (v(t2)) = 0.
Thus, we arrive at the following system

1 . .
(Lair [¢] La;)(?}( )) = \Iflpél (U) 1n (tl,tg). (4‘24)
Lo 00 (02)) = Lo (60 (82)) = 0O (1) = 00 (02) =,
where af +a; = Ky and afal_ = xq.

Next, suppose by contradiction that ¥; o, (v(to)) < 0. Hence, using the maximum principle in
(4.24), it follows that v(M (tg) < 0, which is a contradiction. The first case is proved.

For the second case, the idea is similar.

Case 2. If v(1) < 0, then ¥y ,, (v) < 0.

When v(l)(to) < 0, as before one can find —co < t1 < ty < tg < oo such that v < 0in (t1,t2) and
(4.24) holds. Using the same contradiction argument, suppose that there exists tg € (¢1,%2) such
that ¥y o, (v(to)) = 0. By the minimum principle applied to (4.24), we find vM (to) > 0, which is
also a contradiction. This finishes the proof of the second claim.

The study of the remaining term is less complicated and direct application of a comparison
principle. Indeed, notice that ¥s ,,(v) can be written as a positive second order operator on 0@,
Step 3. sign(v(?) = sign(Vq 4, (v)).

As before, we must study two cases as follows.

Case 1. If v@ > 0, then Uy 0y(v) = 0.

In fact, we may assume that v(®(tg) > 0. We know from Corollary 4.5 that Claim 2 holds if
v®) (tg) = 0. We thus assume that v(®(¢y) > 0. Since v is bounded there exist —co < t; < tg <
ty < oo such that v (t1) = v®(t5) = 0 and v® > 0in (t,t9). By Corollary 4.5 and Lemma 4.10,
we get that v (t;) = v (t3) = 0, which implies La,(v® (t1)) = La, (v (t2)) = 0.
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Now, it is convenient to write

Loy (v)) = Uy, (v) 0 (t1,10)
Loy (v®) (t1)) = Lay (v®) (t2)) = 0.

It is straightforward to check that Wg o, (v(tg) > 0. Otherwise, we would have Wy o, (v(tg) < O.
Thus, by the maximum principle, v(?)(ty) < 0, which contradicts the assumption.

The second case has a similar proof.
Case 2. If v < 0, then Uy, (v) < 0.
When v(?) (to) < 0, as before one can find —oo < t; < tg < t2 < oo such that v@ < 0in (t1,t2)
and (4.25) holds. Again, the same argument by contradiction based on the minimum principle
yields Wg o, (v(tg)) < 0.

The conclusion is a direct consequence of Steps 1, 2 and 3. O

(4.25)

Remark 4.12. Using the same ideas one can also verify the sign identity below
sign(v)) = sign(&; (v) — v®) = sign(V} 4, (v) — v®) = sign(— K40 + a;oV), (4.26)

where ay € (0, %] is such that (4.22) holds.

As a consequence of the last lemma, we find two energy inequalities for solutions to (Og).

Corollary 4.13. Let v € C%(R) be a bounded solution to (Og). The following energy identity
holds:

1
—R(v) == —H@) + Gv) + 51)(3)2 <0. (4.27)
Proof. Initially, notice that using (2.11), we get
—R(v) = —[& ()0 + E(v)v?)], (4.28)
which combined with Lemma 4.11 implies (4.27), and so the proof is concluded. O

The next comparison lemma is a preparation for proving the energy ordering. Subsequently,
we will focus on the situation vgl)(O) > vél)(O) > 0. By symmetry, the same strategy applies
otherwise. This result is a weaker version of Lemma 4.4, and strongly relies on the energy identity
in Corollary 4.13. It shows that to prove uniqueness of solutions to (QOg), one only needs three

initial conditions instead of six as usual.
Lemma 4.14. Let vi,vy € C%(R) be bounded solutions to (Og). Suppose that H(v1) < H(va), and
v (0) = v2(0), vP(0) > o 0) >0, 20 =0 0), and P (0) =P 0).  (4.29)
Then, v1 = vs.
Proof. Initially, using (4.29), it is not hard to check that
L, (v1(0)) > Ly, (v2(0)) and LY (01(0)) > LY (02(0). (4.30)
Next, from (4.22) and (4.28) at ¢t = 0, we have

R(w1(0)) = ~H(wr(0)) + Cr (0)) + 50i (0)7

and B L,
—R(v2(0)) = =H(v2(0)) + G(v2(0)) + 5v57(0) -

2
Also, using (4.29), it follows

H@(0) + G0 0) + 507 0) € ~H(w(0) + Ge20) + 787 0)” <.

N
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This combined with Corollary 4.13 gives us
— R(v1(0)) < —R(v2(0)) < 0. (4.31)

From this, we obtain two identities as follows

0< [&1(w2)es” = 1)l | (0) < [E1(02(0) = E1(02(0))] 5 0)
and
0 < [&(02)0f” — Ex()v? | (0) < [E2(02(0) = E(01(0))]of 0),
which yields
E1(v2(0)) = E1(01(0))  and  E(v2(0)) = Ex(v1(0)). (4.32)
Now, by combining (4. 32) and (4.29), we get respectively
70> w”(0) and v7(0) < 37(0).
Therefore, we conclude
(Lay © Liay)(01(0)) = (L, 0 L, ) (v2(0))- (4.33)
and
(La 0 L) (©1(0)) = (L, © L) (02(0)). (4.34)
Finally, using (4.29), (4.30), (4.33) and (4.34), we can apply Lemma 4.6 to finish the proof. O

In what follows, let [t1,t2] C R denote intervals where the functions v 0@ are strictly
monotone on (t1,%2). In this fashion, denoting the inverse of v(t) by t(v), we define the change of
variables

s=v and ((s)= [U(l)(t(s))r. (4.35)

Now for s € [s1, s2] = [v(t1),v(t2)], we have

(D (s) = 202(t(s)) and ¢ (s) = 209 (¢(s)).
If t; = —oo, then we write ((V(s1) = lim_s, ¢V (¢) and (P (s1) = lim,_,,, (P (¢). In the same
way, if ty = 400, then we write (1) (s9) = lim,_s,, (M (#) and (P (sy) = lim, s, (@ (t). Notice
that these two limits exist as a consequence of Lemma 4.10.
We are ready prove the energy ordering lemma, which is another crucial result in this manuscript.

Lemma 4.15. Let v,v2 € CY(R) be bounded solutions to (Og). Suppose that vi(0) = v2(0) and
either U%l)(O) > fuél)(O) >0 or U%l)(O) < fuél)(O) < 0, then H(vy) > H(va).

Proof. We divide the proof into three steps as follows.
The first step states that there are at most two bounded solutions on the unstable manifold of
each equilibrium point.

1 @)

Step 1. Suppose that vi,ve,v;’,v5 " are non-constant functions, and that there exists ¢y €
A(v1) N A(vg) such that

; T _ ; M)y — D4y —
t_l}gloo vi(t) = t_lggloo va(t) =4y and tl}linoo vy (t) = lim vy’ (t) =0.

t—+oo

Then, it follows that vi(t) decreases to £y and vy(t) increases to ¢y as t — +oo, or vice versa. In

addition, vgl)(t) increases to 0 and vél)(t) decreases to 0 as t — 400, or vice versa.

(1 (1)

Initially, by Corollary 4.5, v1,v2 and v; 7, v, can only tend monotonically to their respective
limits. Also, using symmetry, we may suppose by contradiction that vy and vy both decrease

towards ¢y as t — —oo and vgl) Y both increase towards 0 as t — —oo. In other words,

there exists 7' > 1 such that vy (t) > 0, va(t) > 0, v(l)( t) <0, and vél)(t) <0 for t € (—o0,T).

and Ué
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We finish the contradiction argument with the following claim:
Claim 1. v; = vs.
Indeed, for s € (Lo, %y + €0), where 0 < g9 < 1 is small enough, let ¢; and ¢ correspond to
v1 and v respectively by the change of variables defined in (4.35). Notice that one must have
Cfl) % Cél) and dz) + C2(2) on (Yp,ly + £¢) . Otherwise, by Lemma 4.4, we would get v; = vs.
Without loss of generality, we may assume C}l) > C2(1) and C£2) > C§2) on (g, ¢y + €¢). Since both
(1, C}l) and (o, Cél) are differentiable on (£, £y + £¢) and, by Lemma 4.10, ¢ (¢y) = ¢2(fo) = 0 and
dl)(ﬁo) = Cél)(ﬁo) = 0. Therefore, there exists so € (o, o + €p) such that Cfl)(so) > Cél)(so) and
6t (s0) > &7 (s0).

We divide the analysis into two cases:
Case 1. Both Cél)(so) >0 and C§2)(30) > 0.
There exist t1,t2 € R such that

vi(ty) = valta) = so, v(t) > v (t) >0, v (1) =P (1), and P (1) = olP (1)
By translating, v1 and vy by t1 and ¢y respectively, we find
v (0) =02(0), v{(0) > oiP(0) >0, v1P(0) = 0P 0), and v{P(0) =P 0).  (4.36)

Since both v; and vs tend to £y monotonically as t — —oo, we conclude from Lemma 4.10 that
A~ (v1) = A" (v2) = £p and A_(vgj)) =A"(v (J)) =0for j =1,2,3,4,5. Therefore, H(vi) = H(v2).
In the light of (4.26), it is straightforward to check that (4. 36) instead of (4.29) is sufficient for the
proof in Lemma 4.14 to go on unchanged. Hence v; = vy. This finishes the proof of the first case.

Case 2. Either Cél)(so) <0or (2(2)(80) < 0.
Without loss of generality, we assume (2(1)(80) < 0; the same idea applies in the other situation.
Notice that Cl > 0 on (4, so] and Cél)(ﬁo) = 0. Then, there exists a sy € ({y,s9) such that
( ) = 0. If Cl ( ) > 0, then C}l)(§0) > Cél)(%) = 0, which is covered by the last case.
If Cl ( 0) < 0, then Cl (50) < Cél)(go) and Cfl)(so) > Cél)(so), and by continuity there exists
S0 € (50, so] such that C}l)(§0) = Cél)(§0). Hence, one can find ¢1,t2 € R such that
)(t

’Ul(tl) = Ug(tg) = S, Ugl 1) > Uél)(tg) > 0, 1)52) (tl) = 7)52) (tg), and ’Ugg) (tl) = ’Uég) (tg).

Since H(v1) = H(ve) as above, we may apply Lemma 4.14 to obtain v; = v, which finishes the
proof of the second case.

The proof of Step 1 is concluded.

The next step states that whenever the energy inequality is violated one can find points on
which the second and the third derivatives of these two bounded solutions coincide.
Step 2. Suppose that v1(0) = v2(0) and v&l)(O) > vél)(O) > 0, and H(v1) < H(vz2). Then, there
exist t1,ts € R such that

vr(t) =va(ta), oV () > ol (ta) =0, v (t) =P (), and P () =P (1), (4.37)

Let [51,52] be the largest interval containing ¢ = 0 on which Ugl)mgz)’vgi’,) are positive, and let

[t1,t2] be the largest interval containing ¢ = 0 on which vgl),fué ),1)53) are positive. We can now
apply the change variables (4.35) again. Let (; correspond to vy on [31,82] = [v1(t1),v1(f2)], and
let (2 correspond to wvg on [sy, 2] = [va(t1),v2(t2)]. Clearly, as a consequence of Lemma 4.4, we
have ¢; > (2 on (s1,s2). Finally, if —oo < t;, then it follows from Lemma 4.10 that §; < sq,

whereas if t; = —oo, then this follows from Step 1. The same happens to S > s3.
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We fix the notation ¢ = (¢, ¢®) and [¢|? = C(1)2 +§(2)2. We will prove that the norm function
has opposite sign on the edges of [s1, s2].
Claim 2. [¢;(s1)]* < [Co(s1)[*.
One can see that (2(s1) = fuél)(tl) =0, Cél)(sl) = 2?)(2)( t1) = 0 and C2(2)(sl) = 21)53)(151) > 0.
Indeed, if t; = —oo, this follows from Lemma 4.10, whereas if —oo < t7, then it holds because
v(ty) and v(l)(tl) are minimums. Notice that vy(f;) = 3; < s1 and vy (f2) = 82 > s9 > s1, thus let
t. € (t1,12) be such that vy (t,) = va(t;) = s1. By (2.11) and Lemma 4.11, we obtain

a5l — [6 (s _ <1U<2><t1>2 - 1v§2’<t*>2> + (%05’)(:51)2 o) )

8 22 2 2
> [H(v2) — G(s1)] = [H(v1) — G(s1) — R(v1(ts))]
= [H(v2) — H(v1)] + R(v1(ts)).

Next, using that U1 ty) \/ ¢ (1) \/ Cél)(sl) = 0, combined with Corollary 4.13, we conclude
R(vi(ts)) > 0. Hence since H(ve) — H(vi) = 0, the desired conclusion holds.

Claim 3. [¢;(s2)[* > [Ca(s2)[*.

Indeed, one can see that (2(s2) = 0 and Cé”(sz) = 2vé2) (t1) < 0. Indeed, if t3 = oo, this follows
from Lemma 4.10, whereas if to < 400, then it holds because v(t2) is a maximum. Notice that
va(t1) = s1 > 81 and wa(ta) = s2 < 82 < 31, thus let t* € (t1,t3) be such that vy (t*) = v1(f2) = 9.
By (2.11) and Lemma 4.11, we obtain

[Ca(s2)” — [€1(s2)]?
8

As before, we conclude the proof of this claim.

By continuity, we find s, € (s1, s2) such that |¢;(s«)| = |C2(s«)], which implies C}l)(s*) = Cél)(s*)
and Cf)(s*) = Céz)(s*). The proof is finished by undoing the transformation (4.35)

Finally, we are based on the last step to conclude the proof of the energy ordering.
Step 3. H(v1) > H(v2).

By symmetry, we may assume vgl)(O) > vél)(O) > 0. Suppose by contradiction that H(v1) <
H(vz2), then, by Step 2, there exist ¢1, o € R such that (4.37) holds. Thus, by translation invariance,
we may take t; = to = 0, which gives us that (4.29) are satisfied. Therefore, using Lemma 4.14 we

obtain that v1 = v, which contradicts our assumptions, and so Step 3 is proved.
The proof of the lemma is finished. U

= [H(v2) — H(v1)] + R(v1(t2)).

4.5. Uniqueness. We prove uniqueness, up to translations, of homoclinic solutions to (Og).

Lemma 4.16. Let vi,va € CSR) be bounded positive solutions to (Og).  Suppose that

limyy o0 v1(t) = limyy o0 v2(t) = 0 and fugl)(O) = vél)(O) = 0. Then, it follows vi = vs.

Proof. We divide the proof into claims
Claim 1. ¢ty = 0 is the only zero of v&l) and vél).

Indeed, if v&l) had another zero at, say, t; > 0, then by repeatedly applying Corollary 4.5, we get
that v must be periodic of period 2¢; > 0. In particular 0 < v(0) = v(2kt;) for all k£ € N, which

contradicts the fact v(t) — 0 as t — +o00. The argument for vél) is analogous. Hence, we get
vgl)(t) <0 and vél)(t) <0 forall t>0; (4.38)

this proves the first claim.
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Next, by Lemma 4.10 and Proposition 2.10, we find
Hy, = tl}gloo Hoy (t) =G(0) =0 and H,, = tljr-gloo Ho, (t) = G(0) = 0. (4.39)

From which, we see that if v;(0) = v2(0), then, by Lemma 4.4, the proof is concluded.
Claim 2. v1(0) = v2(0).
As a matter of fact, let us suppose by contradiction that v1(0) > v2(0). We claim that this implies
vy > v9 everywhere. Indeed, otherwise there would exist ¢; > 0 such that v; > vy on [0,%1) and
v1(t1) = va(t1). Then, by (4.38), we infer that fugl)(tl) < Uél)(tl) < 0. If U%l)(tl) = vél)(to),
then Lemma 4.4 implies v; = vy, contradicting v1(0) > v2(0). If fugl)(tl) < Uél)(tl) < 0, then, by
Lemma 4.15, we obtain #,, > H,,, which contradicts (4.39).

For any R > 0, since vy, vy € CO(R) satisfy (Og), using integration by parts, we get

T
0= / ) (v%ﬁ) — K4v§4) + ngf) + g(v1)>
T

T T
=mw+/v&#hmm9+mﬁﬁwmo+/vm@mwwm»
=T =T

T

:Ban+/'kumW>—Mm»,

-T
where the term B(T') denotes all the boundary terms coming from the integrations by parts. By
Lemma 4.10, we have B(T') — 0 as R — +oo. However, since fipT vov1 (f(v2) — f(v1)) is a negative
and strictly decreasing function of 7', we obtain a contradiction by choosing 1" > 1 large enough.
The lemma, is proved. U

A direct consequence of this uniqueness result is that for the concrete values of Kg, Ko, K4 given
by (2.2) and p = %, one can compute the homoclinic solution explicitly. This is precisely the
only place in the proof where the closed form of these parameters enters.

Corollary 4.17. Let v € C5(R) be a bounded solution to (Og). If limpy oo v(t) = 0, then there
exists T' € R such that
v(t) = cp(2cosh(t —T)) .

Proof. A straightforward calculation shows that vy(t) = ¢, (2cosh(t))™ " solves (Og). Using the
conditions on v, we have that v has a global maximum at some T’ € R. Since v()(T) = 0, we can
apply Lemma 4.16 to conclude that v(- +7T') = vp, and this finishes the proof. ]

4.6. Classification. In what follows, we state the most important auxiliary result in the proof of
our main proposition.

Lemma 4.18. Let v € C5(R) be a solution to (Og). One of the following three alternatives holds:
(a) v==a) orv=0;
(b) v(t) = £ep(2cosh(t —T))~ " for some T € R;
(¢c) v is periodic, has a unique local mazimum and minimum per period, and is symmetric with
respect to its local extrema.

Proof. Let v € C9(R) be a solution to (Og) and let # 2 (v) be its critical set as defined previously
n (4.2). We now distinguish several cases with respect to the cardinality of the critical set.
Case 1. #2ZW(v) = 0.

In this case, v is strictly monotone. In fact, up to replacing v(t) by v(—t), we may assume that v
is strictly increasing, and so, by Lemma 4.8, it follows ¢4 = lim;, 1+ v(t) € R. By Lemma 4.10,
we are reduced to studying three situations as follows.
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If /_ =0 and ¢4 = a, then using Lemma 4.10, we get lim;,_ H,(t) = G(0) = 0, whereas

limy oo Hy(t) = G(a)) < 0, a contradiction to energy conservation. In the same way, a
contradiction is obtained if /_ = —a;, and /4 = 0.
It remains to consider the case {_ = —a), and /4 = a}. As before, we can apply Lemma 4.10
lim H,(t) = G(a,,) < 0. (4.40)
[t]| =00

On the other hand, by Corollary 4.13, we have that the following sign identity holds
1
Ho(t) > §v<3> )2 + R(v(t)) + G(u(t)). (4.41)

However, by evaluating the energy at some ¢ = ¢y such that v(¢p) = 0 and using (4.41), we obtain
Hy(to) = 503 (t9)? +R(0) + G(0) > 0, which contradicts (4.40) and the energy conservation. The
conclusion is that Z(1)(v) = @ cannot occur.

Case 2. #ZW(v) = 1.

Up to a translation, we may assume Z()(v) = {0}. Thus, v is strictly monotone on (—oco,0) and
(0,00), which yields that {4+ = lim; 4 v(t) € RU{*oo}. By Lemma 4.8, we have /1 € R, and
so v is bounded, and, by Corollary 4.5, also even. Then, we find ¢4 = ¢_. By Lemma 4.10, only
three cases can occur: f4 = ¢_ = 0 or {; = {_ = +a;,. In this case, monotonicity implies that
either v > 0 or v < 0, and we conclude v(t) = ¢, (2 cosh(t)) ™" by Corollary 4.17.

For the remaining cases, by otherwise replacing v(t) by —v(t), let us assume without loss of
generality that ¢4 = (_ = a,. Using that v is strictly monotone on [0,00), v(0) # af, and
H,(0) > %v(g) (0)2 + G(0) > 0, one can see that since F' attains its global minimal value only at
v = £a} it holds v(0) = —a}. Hence v changes sign; i.e., there exists ¢y € R such that v (t9) = 0.
By Corollary 4.5, we get that v is anti-symmetric with respect to tg, which is a contradiction with
{1+ > 0. Therefore, we obtained that if #Z" (v) = 1, then v(t) = 4¢, (2 cosh(t)) .

Case 3. #ZW(v) > 2.

By continuity of v(!), we find that unless v is constant (and hence v = +a’ or v = 0), the closed set
ZM (v) cannot be dense; that is, there exist real numbers t; < to such that v (¢;) = oM (t3) =0
and v(Y) = 0 on (t1,t3). Then, by Lemma 4.3, we get that v is bounded and therefore, we can use
Corollary 4.5 as in the proof of Lemma 4.16 to find that v must be periodic of period 2(t2 —t1). In
addition, since v is strictly monotone on (¢, t2), there is (strictly) only one maximum and minimum
per period interval. The symmetry with respect to the extrema follows from Corollary 4.5. O

4.7. Shooting technique. Finally, we are ready to prove the main result in this section.

Proof of Proposition 4.1. The proof will be divided into three steps as follows:
Step 1. Proof of (i).

By Lemma 4.18, the only possible case on which the estimate (4.1) may fail to is when v is
periodic. In this case, v possesses a local minimum at, say, typ € R. Note that if v has a zero then
(4.1) is automatically fulfilled, so we may assume that v has a fixed sign and, up to replacing v by
—v, we may assume that v > 0. However, using Lemma 4.9, either v is constant, and so v = a,,
or v(tp) < a}, which yields that (4.1) holds with strict inequality, which in turn proves (i).

Step 2. Proof of (ii).

The value ag € (0,a}) will be considered to be fixed throughout the following argument. For
any vector b = (by,by) € RZ :={b:b; > 0for j = 1,2}, where b; = ay; for j = 1,2, let us denote
by vp € CO(R) the unique solution to (Og) with the initial values

v(0) = ag, v@0)=b;, v™0)=by, and vV (0) =03 (0) =0 (0) =0, (4.42)

and by Tp € (0, 00] its maximal forward time of existence.
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We now proceed to our shooting technique. Since G(v) — 400 as v — +o0, for any C(ag) > 0,
which will be chosen later, there exists R(ag) > 0 such that G(v) > C(ap) for all v > R(ap). In
this fashion, let us define the shooting decomposition sets

Sy = {b e R3 : vp(t) < 0 for some t € (0,Tp)},

and
Sy := {b € R3 : vp(t) > R(ap) for some t € (0,Tp) and vp > 0 in [0,¢]} .

Clearly, S1,S5, C ]RT_l are open because of the standard continuous dependence of solutions on
the initial conditions. Thus, we are left to show that they are both non-empty and disjoint. This
is the content of the following claims.

Claim 1: (b*,+00)? C Sy # @, where b* = max{f3, 32} are the greatest solutions to the algebraic
equation — K, 4+ K,3% — I?o =01in R.

In fact, suppose that b; > b* for any j = 1,2. Hence, writing (Os) as

vl(,ﬁ) = K4vl(,4) — ngf) —g(vp) in R (4.43)

and combining with (4.42), we find that vt(fj) increases initially. Thus, Ut(?) (0) and 1)24)(0) increase
initially, and since the right-hand side of (4.43) is positive initially, it is easy to check that they
stay positive on [0,7p). Whence, vt(,6) > 0 in [0,7p), which implies that vl(f) for j =0,...,5 all
keep increasing on [0,7}). Consequently, if T, = 400 then vp is unbounded. On the other hand,
since ¢ is locally Lipschitz, if T, < +o00, then vp(t) — 400 as t — Tp . To summarize, vél) > 0 in
[0,Tp) and lim¢,7, vp(t) = 400 when b; > b* for any j = 1,2. Based on this, we can restrict our
search to the so-called shooting parameter set b € [0,b*]> =: S.

Claim 2: (S1NS2)NS =0.

In fact, notice that for all b € S, we have the uniform energy bound

H(’Ub)(O) < bgbl — b% + G(CL()) < (b2 — bl)bl + G(ao) = C(CL()). (4.44)

This implies that whenever b € [0,b*]> and wvy(to) > R(ag), we must have v,()l)(to) # 0, otherwise,
by using Corollary 4.13, the following identity holds

2
Hlun(to)) = 30§ (1) + Riwslto)) + Glun(to)) > Clao),

where R(vp(to)) = Ea(vp(to))vp @ (tg) > 0 is given by (4.27). The last inequality contradicts
(4.44) and the conservation of energy in Proposition 2.10. In particular, if v, enters the interval
(R(ap),+00), then vp cannot leave it again, and hence is certainly not a periodic solution.
Claim 3: 0 € 5] # @.

On the other hand, if b = 0, we see from (4.43) that v(()ﬁ) (0) = g(ap) < 0, and hence vy, v((,2), and

(4)

vy~ are strictly decreasing on some small interval ¢t € (0,7) for some 7 > 0. Since g(v) < 0 for

v € (0,a9), we deduce from (4.43) that v(()] ) for j =1,...,5 stay strictly negative until vg reaches
a negative value. Therefore, if b = 0, there must be ty such that vg(tg) < 0.

Since our shooting parameter interval R%_ is connected, we deduce that S U Sy # R%_. Hence
there exists b* € R% \ {0} and a corresponding solution v* := v+ such that 0 < v* < R(ay),
which means that v* is bounded. Combining this with the fact that g is locally Lipschitz, we get
that Ty = oco. By even reflection, we find a solution defined on R, which we still refer to as v*.
Since b* € R% \ {0}, we know v* has a strict local minimum at the origin. Therefore, using the
classification from Lemma 4.18, v* must be periodic. Moreover, it has a unique local maximum
and minimum per period and is symmetric with respect to its extrema. The uniqueness of v* up
to translations follows from Lemma 4.15.
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Step 3. Proof of (iii).

Using that A\; = 7,, we need to prove that w := v(!) /v satisfies w(t) < A for all ¢t > 0. Using
Lemma 4.18, one can find ¢y € R such that v(V)(tg) = 0, and so w(tg) = 0. Then, we reduced to
prove the following claim
Claim 4. M = {t > ty:w(t) > \} = 2.

Indeed, notice that w € C°(R) satisfies

)
w® = —w? + A + 71 (4.45)

where ¢, = 8,@1) — Av. Now, suppose by contradiction that M # @ and let ¢t := inf M. It is
easy to see that t; > to, which yields w™(¢;) > 0. On the other hand, since w(t;) = A1, (4.45)
implies

@ (t1)
(1) _ 1\t1
w' (t1) o)
which combined with v(¢1) > 0 yields
By (t) > 0. (4.46)

Next, using the notation in the proof of Lemma 4.4, we can rewrite (Og) as
Ly (@) == 0% + MAe®2 = —f(v) in R,

where @1, Py, 3 are defined in (4.3). According to Lemma 4.18, v attains its maximum in R.
Since v > 0, the maximum principle implies that 5 < 0 in R. Thus, since

—L)\l ((I)l) = —(I)§2) + )\1(1)1 = (I)g in R,

the maximum principle again implies that ®; < 0 in R. This is a contradiction with (4.46), which
finishes the proof. O

5. PROOF OF THE MAIN THEOREM

In this section, we are based on Proposition 3.1 and Proposition 4.1 to prove Theorem 1.

Proof of Theorem 1. First, using Proposition 3.1, it follows that w is radially symmetric. Notice
that v(t) = e™tu(e!) satisfies (Og), we are in position to apply the classification result from
Proposition 4.1. Hence either v = a is constant or v is periodic. Indeed, the only case that
remains to be excluded is that v(t) = ¢,(2cosh(t — T'))™ for some T' € R. However, if this holds,
we would have that v(t) ~ ¢, as t — —oo and hence the singularity of u would be removable,
which is a contradiction since 0 is a non-removable singularity. Thus, either v is constant or
periodic.

Second, fixing ag := inf v and using Proposition 4.1 (i), it follows that ag € (0,a}], and ap = a}
if and only if v = a};. Moreover, when ag € (0, a}), the function v is periodic with minimal value
ag. Therefore, by the Proposition 4.1 (ii), we get that v(t) = v,(t + T) for some T € R.

Finally, a simple computation shows in Emden—Fowler coordinates that &mu < 01in (0, 400) is

equivalent to v < v in R, which is true because of Proposition 4.1 (iii). This concludes the
proof of our main theorem. O
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