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CLASSIFICATION FOR SINGULAR POSITIVE SOLUTIONS TO CRITICAL

SIXTH ORDER EQUATIONS

JOÃO HENRIQUE ANDRADE AND JUNCHENG WEI

Abstract. We classify entire singular positive solutions to a family of critical sixth order equations
in the punctured space with a non-removable singularity at the origin. More precisely, we show
that when the origin is a non-removable singularity, solutions are given by a singular radial factor
times a periodic solution to a sixth order IVP with constant coefficients. On the technical level,
we combine integral sliding methods and qualitative analysis of ODEs, based on a conservation of
energy result, to perform a topological two-parameter shooting technique. We first use the integral
representation of our equation to run a moving spheres technique, which proves that solutions are
radially symmetric with respect to the origin. Thus, in Emden–Fowler coordinates, we can reduce
our problem to the study of an sixth order autonomous ODE with constant coefficients. The
main heuristics behind our arguments is that since all the indicial roots of the ODE operator are
positive, it can be decomposed into the composition of three second order operators satisfying
a comparison principle. This allows us to define a Hamiltonian energy which is conserved along
solutions, from which we extract their qualitative properties, such as uniqueness, boundedness,
asymptotic behavior, and classification.

Contents

1. Introduction 2
2. Preliminaries 6
2.1. Integral representation 6
2.2. Kelvin transform 6
2.3. Radial Emden–Fowler coordinates 6
2.4. Decomposition 7
2.5. Conservation of energy 8
3. Radial symmetry 9
3.1. Integrability 9
3.2. Superharmonicity 10
3.3. Integral moving spheres method 11
4. ODE analysis 14
4.1. Boundedness 14
4.2. Comparison 15
4.3. Asymptotics 16
4.4. Ordering 20
4.5. Uniqueness 25
4.6. Classification 26
4.7. Shooting technique 27
5. Proof of the main theorem 29
References 30

2020 Mathematics Subject Classification. 35J60, 35B09, 35J30, 35B40.
Key words and phrases. Tri-Laplacian, Critical exponent, Sixth order equation, Liouville-type theorem, Emden–

Fowler solutions.
This research is partially supported by São Paulo Research Foundation (FAPESP) #2020/07566-3 and

#2021/15139-0 and Natural Sciences and Engineering Research Council of Canada (NSERC).

1

http://arxiv.org/abs/2210.04376v1


2 J.H. ANDRADE AND J. WEI

1. Introduction

We are interested in classifying (classical) singular positive solutions u ∈ C6(Rn \ {0}) with
n > 7 (which will always be assumed so forth) to the following family of critical sixth order PDEs
on the punctured space

(−∆)3u = cnu
n+6
n−6 in R

n \ {0}. (P6,∞)

Here ∆3 = ∆ ◦∆ ◦∆ is the tri-Laplacian and f(u) := cn|u|p−2u with p = 2n
n−6 := 2∗3 is critical in

the sense of the compact Sobolev embedding of H3(Rn) and cn is a normalizing geometric constant
given by

cn :=
n(n− 6)(n4 − 20n2 + 64)

64
.

We say that a positive solution u ∈ C6(Rn \ {0}) has a removable singularity at the origin if
limx→0 u(x) < ∞, that is, it can be continuously extended across the origin. Otherwise, we say
that the origin is a non-removable singularity. Let us call these solutions non-singular and singular,
respectively.

Let us mention that the second-named author and X. Xu [36] studied non-singular solutions to
(P6,∞). On this subject, they are based on a sliding technique to prove that all its non-singular
positive solutions are radially symmetric with respect to some point and have a closed expression.
This result confirmed a conjecture by E. Lieb [27] about the classification of extremal function for
the Sobolev inequality. These results can be stated as follows

Theorem A. Let u ∈ C6(Rn) be a non-singular positive solution to (P6,∞). Then, there exist
x0 ∈ R

n and µ ∈ R such that u is radially symmetric with respect to x0 and monotonically
decreasing. Moreover, it holds

u(x) =

(
2µ

µ2 + |x− x0|2
) 6−n

2

.

The elements in this family are called spherical solutions and they are denoted by ux0,µ.

Our main result in this manuscript extends Theorem A for the case when the origin is a non-
removable singularity and can be stated as

Theorem 1. Let u ∈ C6(Rn \ {0}) be a singular positive solution to (P6,∞). Then, u is
radially symmetric with respect to the origin and monotonically decreasing. Moreover, there exist
a0 ∈ (0, a∗n) and T ∈ [0, Ta0 ] such that

u(x) = |x| 6−n
2 va(− ln |x|+ T ).

Here va is the unique periodic bounded positive solution to the sixth order IVP (or Cauchy problem)
below{

v(6) −K4v
(4) +K2v

(2) −K0v + cnv
n+6
n−6 = 0 in R

v(0) = a0, v(2)(0) = a2, v(4)(0) = a4, and v(1)(0) = v(3)(0) = v(5)(0) = 0.
(O6,∞)

Here K0,K2,K4 are dimensional constants (see (2.2)), a2, a4 depend on a0, and a∗ = K
(n−6)/12
0 .

The elements in this family are called (sixth order) Emden–Fowler solutions and are denoted by
ua,T .

Remark 2. Notice that the assumption that our solutions are classical is not restrictive. In
fact, by a standard regularity lifting technique from [6], one can show that any weak solution
u ∈ H3(Rn \{0}) to (P6,∞) also salves (P6,∞) in classical sense, that is, u ∈ C6(Rn \{0}) or even
smooth u ∈ C∞(Rn \ {0}) and (P6,∞) holds pointwise.
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Recently, T. Jin and J. Xiong [23] used variational techniques to prove existence of solutions to
(P6,∞). In fact, they considered a integral equation generalizing (P6,∞), which includes non-local
versions of the nonlinearity (see also [8]). The full classification result for the critical fractional case
is still unknown. For other ranges of the power-nonlinearity, S. Luo et al. [29] proved a monotonicity
formula for solutions to related sixth order equations. We refer the reader to [10,11,18–20,33,38,39]
for more results on this subject.

Eq. (P6,∞) arises naturally in the study of the lack of compactness for the critical Sobolev
embedding. Besides, its applicability in PDEs, our result has also a connection with differential
geometry. In this language, (P6,∞) is the locally conformally flat version of a more general
geometric equation, the so-called sixth order GJMS equation [12, 16], which is driven by the
P 6 the sixth order GJMS operator. In this geometrical language, our main results classify the
metrics with constant (sixth order) Q6-curvature on (Sn \ {p,−p}, g0), where g0 is the standard
round metric on the punctured unit sphere and Q6

g0 ≡ 2−5n(n4 − 20n2 + 64). Indeed, the metric

g = u6/(n−6)g0 has constant Q6-curvature if, and only, if u ∈ C∞(Sn \ {0}) is a (smooth) positive
solution to the geometric PDE

P 6
g0u = cnu

n+6
n−6 in S

n \ {p,−p},
where

P 6
g0 =

(
−∆g0 +

(n− 6)(n + 4)

4

)(
−∆g0 +

(n − 4)(n+ 2)

4

)(
−∆g0 +

n(n− 2)

4

)
.

For more details on this subject, we refer the interested reader to [5, 9, 13, 24] and the references
therein. It is also worth mentioning the relations of (P6,∞) with tri-harmonic maps [3].

Remark 3. In [23], the asymptotic behavior of solutions to a local equation on the punctured ball
of radius R > 0 is studied. More precisely, it is proved that solutions to

(−∆)3u = cnu
n+6
n−6 in BR \ {0}, (P6,R)

satisfy
u(x) = (1 + o(1))u0(x) as x→ 0,

where u0 ∈ C6(Rn\{0}) solves (P6,∞). Our main theorem may be applied to improve the asymptotic
behavior of solutions to (P6,R) near the origin. Based on [1, 25, 31], we conjecture that assuming
−∆u > 0 and ∆2u > 0, one can find β0 > 0 such that

u(x) = (1 +O(|x|β0))u0(x) as x→ 0.

A result like this have direct implications on the study of the (sixth order) singular GJMS.

Now let us compare our results to the ones in the fourth and second order cases. First, we
consider positive solutions u ∈ C4(Rn \ {0}) the fourth order critical equation

(−∆)2u =
n(n− 4)2(n2 − 4)

16
u

n+4
n−4 in R

n \ {0}, (P4,∞)

where n > 5, ∆2 = ∆ ◦ ∆ is the bi-Laplacian. Notice that (P4,∞) is critical in the sense of the
compact Sobolev embedding H2(Rn). On this subject, we should mention that when the origin
is a non-removable singularity, C. S. Lin [28] (see also [37]) obtained radial symmetry for positive
solutions to (P4,∞) using the asymptotic moving planes technique. Recently, Z. Guo, et al. [17]
proved the existence of periodic solutions by applying a mountain pass theorem and conjectured
that all ODE solutions should be periodic. Later on, R. L. Frank and T. König [15] answered this
conjecture, obtaining more accurate results concerning the classification for entire singular positive
solutions to (P4,∞).
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Theorem B. Let u ∈ C4(Rn \{0}) be a positive solution to (P4,∞). Then, u is radially symmetric
with respect to the origin and monotonically decreasing. Moreover,

(i) Assume that u is non-singular. Then, there exist x0 ∈ R
n and µ ∈ R such that

u(x) =

(
2µ

µ2 + |x− x0|2
) 4−n

2

.

(ii) Assume that u is singular. Then, there exist a0 ∈ (0, [n(n − 4)/(n2 − 4)]n−4/8) and
T ∈ [0, Ta0 ] such that

u(x) = |x| 4−n
2 va(− ln |x|+ T ),

where va is the unique periodic bounded solution to the fourth order IVP below
{
v(4) − n(n−4)+8

2 v(2) + n2(n−4)2

16 v − n(n−4)2(n2−4)
16 v

n+4
n−4 = 0 in R

v(0) = a0, v(2)(0) = a2, and v(1)(0) = v(3)(0) = 0.
(C4,∞)

Second, we consider positive singular solutions u ∈ C2(Rn \ {0}) the second order critical
equation below

−∆u =
n(n− 4)

8
u

n+2
n−2 in R

n \ {0}, (P2,∞)

where n > 3, ∆ is the Laplacian. Let us notice that (P2,∞) is critical in the sense of the compact
Sobolev embedding of H1(Rn). All the aforementioned classification results were inspired by the
classical theorems of R. H. Fowler [14] (see also [4]) and T. Aubin [2] and G. Talenti [34] on
the study of conformally equivalent metrics with constant scalar curvature, the so-called Yamabe
problem.

Theorem C. Let u ∈ C2(Rn \{0}) be a positive solution to (P2,∞). Then, u is radially symmetric
with respect to the origin and monotonically decreasing. Moreover,

(i) if u is non-singular, then there exist x0 ∈ R
n and µ ∈ R such that

u(x) =

(
2µ

µ2 + |x− x0|2
) 2−n

2

,

which are called spherical solutions and they are denoted by ux0,µ.

(ii) if u is singular, then there exist a0 ∈ (0, [(n − 2)/n](n−2)/4) and T ∈ [0, Ta0 ] such that

u(x) = |x| 2−n
2 va(− ln |x|+ T ),

where va is the unique periodic bounded solution to the second order IVP below
{
v(2) − (n−2)2

4 v + n(n−2)
4 v

n+2
n−2 = 0 in R

v(0) = a0 and v(1)(0) = 0.
(C2,∞)

Let us describe our strategy to prove Theorem 1. First, we prove integrability and
superharmonicity properties for solutions to (P6,∞), which we use to perform an integral sliding
technique and prove that singular positive solutions to (P6,∞) are radially symmetric. Second, we
perform a change of variables to transform (P6,∞) into (O6,∞) a sixth order IVP with constant
coefficients, which can be decomposed into three second order problems satisfying a maximum
principle. This allows us to define a Hamiltonian energy that is conserved along solutions, which,
we use to prove some qualitative properties for positive solutions to (O6,∞). Third, we use a
two-parameter shooting technique to finish the proof of our classification result. By undoing the
Emden–Fowler change of variables, this can be easily translated into a result about solutions to
(P6,∞).
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The main difficulties in our approach are the lack of maximum principle for higher order
operators and the possibly chaotic behavior enjoyed by solutions to ODEs driven by these
operators. The former can be overcome either by an integral representation formula or a
decomposition into second order operators. To deal with the later issue, we use the conservation
of the energy and qualitative properties previously proved. These properties assure that this sixth
order ODE behaves as a second order one.

These (P6,∞), (P4,∞), and (P2,∞) are particular cases of a more general class of equations, which
we describe as follows. For any m ∈ N

+, we are interested in classifying (smooth) singular positive
solutions u ∈ C2m(Rn \ {0}) with n > 2m := N (which will always be assumed so forth) to the
following family of critical even order tri-harmonic PDEs

(−∆)mu = cn,Nu
n+N
n−N in R

n \ {0}. (PN,∞)

Here (−∆)m is the m-poly-Laplacian and cn,N is a normalizing constant given by

cn,N = 2NΓ

(
n+N

4

)2

Γ

(
n−N

4

)−2

, (1)

where Γ(s) =
∫∞
0 τ s−1e−τdτ is the standard Gamma function. The power n+N

n−N := 2∗m−1 is critical

in the sense of the compact Sobolev embedding Hm(Rn).
We remark that almost all of our technical results in this manuscript extend to this class of even-

order poly-harmonic operators. In this regard, a classification result for entire singular solutions
to (PN,∞) in the sense of Theorem 1 is believed to be true. Let us state this conjecture as follows

Conjecture 4. Let u ∈ CN (Rn \ {0}) be a singular positive solution to (P6,∞). Then, u is
radially symmetric with respect to the origin and monotonically decreasing. Moreover, there exist
a0 ∈ (0, a∗n,N ) and T ∈ [0, Ta0 ] such that

u(x) = |x|N−n
2 va(ln |x|+ T ).

Here va is the unique periodic bounded positive solution to the following higher order IVP
{∑m

j=0(−1)j+1K2j,N (n)v(2j) = cn,Nv
n+N
n−N in R

v(2j)(0) = aj and v(2j−1)(0) = 0 for j = 1, . . . ,m.
(CN,∞)

Here K2j,N(n), a∗n,N > 0 are dimensional constants for all j = 1, . . . ,m, namely

a∗n,N = K
n−N
2N

0 and K2j,N (n) = σj

(
±
√
λ1,N (n), . . . ,±

√
λm,N (n)

)
,

where σj are the j-th harmonic polynomial and

λj,N(n) =
n−N + 4j

2

are the indicial roots of the constant coefficients ODE operator.

We explain the plan for the rest of the manuscript. In Section 2, we introduce some
definitions and prove some preliminary results that will be used subsequently, such as integral
representation formulas, Kelvin transform, radial Emden–Fowler coordinates, decomposition
result, and conservation of energy. In Section 3, we apply the integral moving spheres method to
prove that solutions to (P6,∞) are radially symmetric. In Section 4, we perform some ODE analysis
to prove qualitative properties for solutions to (O6,∞), which we use to perform a topological
shooting method and classify these solutions. In Section 5, we combine the energy conservation,
the radial symmetry, and the ODE analysis to prove Theorem 1.



6 J.H. ANDRADE AND J. WEI

2. Preliminaries

This section aims to introduce some necessary background definitions and results for developing
the sliding methods and the asymptotic analysis that will be later used in this manuscript.

2.1. Integral representation. Now we use a Green identity to transform the differential equation
(P6,∞) into an integral equation. In this way, we can avoid using the classical form of the maximum
principle, and a sliding method is available [26,32], which will be used to classify solutions.

The next result uses the Green identity to convert (P6,∞) into an integral system.

Proposition 2.1. Let u ∈ C6(Rn) be a positive solution to (P6,∞). Then (up to constant), it
follows

u(x) =

∫

Rn

|x− y|6−nf(u)dy in R
n \ {0}. (I6)

Proof. It directly follows from [8, Theorem 4.3] (see also [7]). �

2.2. Kelvin transform. Later we will employ the moving spheres technique, which is based on
the 2m-order Kelvin transform. For this, given x0 ∈ R

n and µ > 0, we need to establish the
concept of inversion about a sphere ∂Bµ(x0), which is given by Ix0,µ(x) = x0 +Kx0,µ(x)

2(x− x0),
where Kx0,µ(x) = µ/|x− x0|.
Definition 2.2. For any u ∈ C6(Rn \ {0}), let us consider the sixth order Kelvin transform about
the sphere with center at x0 ∈ R

n and radius µ > 0 defined by

ux0,µ(x) = Kx0,µ(x)
n−6u (Ix0,µ(x)) .

The next proposition states that solutions to (P6,∞) are invariant under the Kelvin transform.
This holds because of the conformal invariance enjoyed by this family of critical equations.

Proposition 2.3. If u is a solution to (P6,∞), then ux0,µ is a solution to

(−∆)3ux0,µ = f(ux0,µ) in R
n \ {0, x0}.

Proof. It directly follows by using [36]. �

2.3. Radial Emden–Fowler coordinates. This is section is devoted to constructing a change
of variables that transforms the singular PDE (P6,∞) problem into the nice ODE problem with
constant coefficients. Here we only consider functions that are radially symmetric, that is, u = u(r)
with r = |x|. Later on, we will prove that this in fact holds for positive singular solutions to (P6,∞)
(see Proposition 3.1).

Definition 2.4. For any u ∈ C6(Rn \{0}) positive (radial) solution to (P6,∞), we define the (sixth
order) Emden–Fowler (or logarithmic-cylindrical) change of variables given by

v(t) = |x| 6−n
2 u(r) with t = ln r.

The power γn := 6−n
2 is chosen by conformal invariance.

This change of variables is used to transform the singular PDE (P6,∞) problem into the nice
ODE problem with constant coefficients

v(6) −K4v
(4) +K2v

(2) + g(v) = 0 in R. (O6)

The nonlinear term is g : C6(R) → C6(R) is defined as

g(v) := f(v)−K0v where f(v) := cn|v|
12

n−6 v.
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The operator P 3
rad : C6(R) → C(R) is the so-called (sixth order) logarithmic cylindrical Paneitz

operator (restricted to radial functions), and is given by

P 3
rad = ∂

(6)
t −K4∂

(4)
t +K2∂

(2)
t −K0, (2.1)

where

K0 =
1

64
(n− 6)2(n− 2)2(n+ 2)2,

K2 =
1

16
(3n4 − 24n3 + 72n2 − 96n+ 304), (2.2)

K4 =
1

4
(3n2 − 12n + 44).

2.4. Decomposition. We prove a decomposition result for the tri-Laplacian operator written in
Emden–Fowler coordinates. Namely, we decompose P 3

rad into a composition of three second order

operators satisfying a comparison principle. In what follows, given λ > 0, we denote Lλ := ∂
(2)
t −λ.

We start with the definition of indicial roots for a linear operator.

Definition 2.5. Let L ∈ (C6(R))′ be a linear operator. The indicial roots of L at +∞ (resp. −∞)
are λ ∈ R for which there is a non-zero function v ∈ C6(R) and λ′ < λ (resp. λ′ > λ) such that

e−λ′tL(eλtv(t)) → 0 as t→ +∞ (resp. t→ −∞). We denote by I(L) ⊂ R its set of indicial roots.

Remark 2.6. Notice that when L ∈ (C6(R))′ has constant coefficients, that is, L =
∑6

j=0 kj∂
(j)
t , it

follows that I(L) = {pL(0)}−1, where pL(λ) =
∑6

j=0 kjλ
j is the indicial polynomial. In particular,

a direct computation shows that the indicial equation associated to (2.1) are given by

pλ(P
3
rad) = λ6 −K4λ

4 +K2λ
2 −K0 = 0, (2.3)

which have a strictly positive discriminant, that is,

discλ(p) := −27K2
0 − 4K2

2 − 4K2
4 +K2

4K
2
2 + 18K4K2K0 > 0. (2.4)

This in turns guarantees the existence of distinct real roots ±
√
λ1,±

√
λ2,±

√
λ3 ∈ R solving (2.3).

Next, we prove a decomposition of P 3
rad into three second order operators.

Proposition 2.7. The following decomposition holds

P 3
rad = Lλ1 ◦ Lλ2 ◦ Lλ3 , (2.5)

where

λ1 =
n− 6

2
, λ2 =

n− 2

2
, and λ3 =

n+ 2

2
. (2.6)

Proof. Initially, recall that for q > 6− n, the following formula holds in the sense of distributions,

(−∆)3(|x|q) =
3∏

j=0

(q − 2j)
3∏

j=1

(q − 2j + n)|x|q−6 in R
n \ {0},

which implies that {uj}j∈{1,...,6} ⊂ C6(Rn \ {0}) is a basis for the space of radial solutions to the
homogeneous tri-harmonic equation, where uj(|x|) = |x|qj with qj = 2(j − 1) if j = 1, 2, 3 and
2(j − m) − n if j = 4, 3, 5. In other terms, (−∆)3uj = 0 in R

n \ {0} for any j = 1, 2, 3, 4, 5, 6.
Hence, under the Emden–Fowler change of variables, we have that {v±1 , v±2 , v±3 } ⊂ C6(R), where

v±j (t) = e±
√

λjt with λj = qj − γn for j = 1, 2, 3, forms a basis for the space of solutions to

(O6), that is, {v±1 , v±2 , v±3 } ⊂ C6(R) is linearly independent and P 3
radv

±
1 = P 3

radv
±
2 = P 3

radv
±
3 = 0

in R. Then, the set of indicial roots of I(P 3
rad) = {±

√
λ1,±

√
λ2,±

√
λ3} ⊂ R. From this, it is

straightforward to check that (2.5) holds. �
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2.5. Conservation of energy. In this section, we find a quantity that is conserved along solutions
to (O6). These will be called the Hamiltonian energy associated with the sixth order ODE (O6).

Let us start with the classical definition of Hamiltonian energy for a solution v ∈ C6(R) to (O6),

which is obtained by multiplying (O6) by v
(1) and integrating by parts.

Definition 2.8. For any real function v ∈ C6(R), let us define its Hamiltonian energy (with
respect to (O6)) H : R× C6(R) → R by

H(t, v) :=

(
v(5)v(1) − v(4)v(2) +

1

2
v(3)

2
)
−K4

(
v(3)v(1) − 1

2
v(2)

2
)
+
K2

2
v(1)

2−K0

2
v2+F (v), (2.7)

where

G(v) := F (v)− K0

2
v2 and F (v) := ĉn|v|

2n
n−6

and

ĉn :=
(n− 6)2(n4 − 20n2 + 64)

128
.

Remark 2.9. Notice that the real roots of G are the equilibrium solutions to (O6), namely

v ≡ 0 and v ≡ ±a∗n, (2.8)

where

a∗n := K
n−6
12

0 =

(
(n− 6)(n − 2)(n + 2)

8

)n−6
6

. (2.9)

Next, it is direct to prove that this energy is conserved along with solutions to (O6). We
emphasize that this conservation is a local property and valid on the maximal interval of existence
and does not require any a priori boundedness assumption.

Proposition 2.10. If v ∈ C6(R) is a positive solution to (O6), then

∂

∂t
H(t, v) ≡ 0.

In other terms, there exists Hv ∈ R such that

H(v)(t) = H(t, v) ≡ H(v) := Hv. (2.10)

Proof. It is a direct computation. �

Remark 2.11. It is convenient to write the Hamiltonian energy as

H(v) =
1

2
v(3)

2
+ E2(v)v(2) + E1(v)v(1) +G(v), (2.11)

where

E1(v) := v(5) −K4v
(3) +

K2

2
v(1) and E2(v) := −v(4) + K4

2
v(2) (2.12)

are the so-called auxiliary energy summand functions.
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3. Radial symmetry

In this section, using the integral moving spheres technique, we prove that singular solutions
to (P6,∞) are radially symmetric. The main ingredient in the proof is the integral version of
the moving spheres technique contained in [21–23, 26]. For this, we are based on the conformal
invariance enjoyed by solutions to (P6,∞) in Proposition 2.3.

Proposition 3.1. Let u ∈ C6(Rn \ {0}) be a singular positive solution to equation (P6,∞). Then,
u is radially symmetric about the origin and monotonically decreasing.

Before we give the proof of the rotational symmetry for singular solutions to (P6,∞), we need
to establish a set of preliminary results.

3.1. Integrability. We show that any singular positive solution to (P6,∞) is distributional.

Lemma 3.2. Let u ∈ C6(Rn \ {0}) be a positive singular solution to (P6,∞). Then, it holds

u ∈ L
n+6
n−6 (Rn). In particular, u is a distribution solution to (P6,∞).

Proof. For any 0 < ε≪ 1, let us consider ηε ∈ C∞(Rn) with 0 6 ηε 6 1 satisfying

ηε(x) =

{
0, if |x| 6 ε

1, if |x| > 2ε,
(3.1)

and |D(j)ηε| 6 C0ε
−j in R

n for j = 1, 2, 3, 4, 5, 6 and some C0 > 0. Define ξε = (ηε)
n+6
2 . Multiplying

(P6,∞) by ξε, and integrating by parts in Br with r ∈ (1/2, 1), we obtain
∫

Rn

f(u)ξεdx =

∫

Rn

u(−∆)3ξεdx.

One can verify that there exists C1 > 0 such that

∣∣(−∆)3ξε
∣∣ 6 C1ε

−6η
n−6
2

ε χ{ε6|x|62ε} = C1ε
−6ξ

n−6
n+6
ε χ{ε6|x|62ε},

which, by Hölder’s inequality, gives us
∣∣∣∣
∫

Rn

u(−∆)3ξεdx

∣∣∣∣ 6 C1ε
−6

∫

{ε6|x|62ε}
uξ

n−6
n+6
ε dx

6 C̃1ε
−6ε

12n
n+6

(∫

{ε6|x|62ε}
f(u)ξεdx

)n−6
n+6

6 Ĉ1

(∫

{ε6|x|62ε}
f(u)ξεdx

)n−6
n+6

.

Thus, it follows
∫

Rn

f(u)ξεdx 6 Ĉ1

(∫

{ε6|x|62ε}
f(u)ξεdx

)n−6
n+6

,

from which one can find a constant C2 > 0 (independent of ε) such that
∫

Rn

f(u)ξεdx 6 C2.

Now letting ε→ 0, we conclude that u ∈ L
n+6
n−6 (Rn) and the integrability follows.
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For any nonnegative φ ∈ C∞
c (Rn), we multiply (P6,∞) by φ̃ = ηεφ, where ηε is given by (3.1).

Then, using that u ∈ L
n+6
n−6 (Rn) and integrating by parts, we get

∫

Rn

u(−∆)3 (ηεφ) dx =

∫

Rn

f(u)ηεφdx. (3.2)

By a direct computation, we find that ∆3(ηεφ) = ηε∆
3φ+ ψε, where

ψε = 6〈∇ηε,∇∆2φ〉 − 15∆ηε∆
2φ+ 20〈∇∆ηε,∇∆φ〉 − 15∆2ηε∆φ+ 6〈∇∆2ηε,∇φ〉 − φ∆3ηε.

Furthermore, using Hölder’s inequality again, one can find C3 > 0 such that

∣∣∣∣
∫

Rn

uψεdx

∣∣∣∣ 6 C3

(∫

{ε6|x|62ε}
f(u)dx

)n−6
n+6

→ 0 as ε→ 0.

Finally, letting ε → 0 in (3.2), and applying the dominated convergence theorem the proof
follows. �

3.2. Superharmonicity. We show that singular positive solutions to (P6,∞) satisfy a
superharmonicity property for lower orders powers of the Laplacian.

Lemma 3.3. Let u ∈ C6(Rn \ {0}) be a singular positive solution to (P6,∞). Then, u is a
superharmonic in the distributional sense, that is, φ ∈ C∞

c (Rn), one has
∫

Rn

∆u∆2φdx 6 0 for all φ ∈ C∞
c (Rn).

Moreover, in the classical sense

−∆u > 0 in R
n \ {0}. (3.3)

Proof. Proceeding similarly to Lemma 3.2, one can prove that u ∈ L
n+6
n−6

loc (Rn). Let ηε ∈ C∞(Rn)
be the cut-off function given by (3.1) and φ ∈ C∞

c (Rn) be a nonnegative test function. Then, by
multiplying (P6,∞) by ηεφ, and integrating by parts, we get

0 > −
∫

Rn

ηεφf(u)dx =

∫

Rn

∆2 (ηεφ)∆udx =

∫

Rn

∆u
(
∆2φηε + ςε

)
dx,

where ςε := 4〈∇∆φ,∇ηε〉+ 6∆φ∆ηε +4〈∇φ,∇∆ηε〉+ φ∆2ηε. Notice that ςε(x) ≡ 0 when |x| 6 ε

or |x| > 2ε, and |∆ςε(x)| 6 C1ε
−6, for some C1 > 0. In addition, since n − 6 − n(n−6)

n+6 > 0, the
following estimate holds

∣∣∣∣
∫

Rn

∆uςεdx

∣∣∣∣ 6
∫

Rn

u|∆ςε|dx

6 C1ε
−6

(∫

{ε6|x|62ε}
f(u)dx

)n−6
n+6

εn(1−
n−6
n+6)

6 C1ε
n−6−n(n−6)

n+6 → 0 as ε→ 0,

which implies
∫

Rn

∆u∆φdx = lim
ε→0

∫

Rn

(
∆u∆2ςεdx+ ηε∆φ∆u

)
dx =

∫

Rn

φf(u)dx 6 0.

Thus, −∆u is superharmonic in the whole space R
n in the distributional sense, which gives the

first part of the proof.
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To prove the second statement, given 0 < ε ≪ 1, let us consider ũε := −∆u + ε. Using
Lemma 3.2, there exists a constant C2 > 0, depending only on n and s, such that for all |x| > 4,
it holds

5∑

j=0

|x|γn+j|D(j)u(x)| 6 C2,

which yields that lim|x|→∞ |∆u(x)| = 0. Whence, for any 0 < ε ≪ 1, there exists Rε ≫ 1 such
that ũε > ε/2 for |x| > Rε. Finally, using that ũε is superharmonic in R

n in the distributional
sense, we have that ũε > 0 in R

n \ {0}, which, by passing to the limit as ε→ 0, provides −∆u > 0
in R

n \ {0}. The last inequality concludes the proof of the lemma. �

Lemma 3.4. Let u ∈ C6(Rn \ {0}) be a singular positive solution to (P6,∞). Then, −∆u is a
superharmonic in the distributional sense, that is, φ ∈ C∞

c (Rn), one has
∫

Rn

∆2u∆φdx > 0 for all φ ∈ C∞
c (Rn).

Moreover, in the classical sense

∆2u > 0 in R
n \ {0}. (3.4)

Proof. The proof is similar to the one of Lemma 3.3, so we omit it. �

Remark 3.5. Notice that these superharmonicity identities in (3.3) and (3.3) can be respectively
rewritten in radial Emden–Fowler coordinates (see Subsection 2.3) as follows

v(2) + (n− 5)v(1) +
(n− 6)(n − 4)

4
v < 0

and

v(4)+2(n−3)v(3)−(3n2 − 18n + 22)v(2)+(n3 − 9n2 + 22n − 12)v(1)+
(n− 6)(n − 4)(n − 2)

16
v > 0.

In addition, we have the decomposition

v(4) − (ν+n + ν−n )v
(2) + (ν+n ν

−
n )v > 0,

where

ν± :=

√
5±

√
2n4 − 24n3 + 88n2 − 96n + 16.

3.3. Integral moving spheres method. We prove the main result of this subsection, namely,
the radial symmetry of the blow-up limit solutions.

Lemma 3.6. Let u ∈ C6(Rn \ {0}) be a positive singular solution to (P6,∞). For any x ∈ R
n,

z ∈ R
n \ ({0} ∪Bµ(x)) and µ ∈ (0, 1), it holds that u(z)− (u)x,µ(z) > 0.

Proof. Let u be a positive singular solution to (P6,∞). Using the identities in [26, page 162], one
has (

µ

|z − x|

)n−6 ∫

|y−x|>µ
|Ix,µ(z)− y|n−6f(u(y))dy =

∫

|y−x|6µ
|z − y|n−6 f(u(y))dy

and (
µ

|z − x|

)n−6 ∫

|y−x|6µ
|Ix,µ(z)− y|n−6f(u(y))dy =

∫

|y−x|>µ
|z − y|n−6 f(u(y))dy,

which yields

(u)x,µ(z) =

∫

Rn

|z − y|n−6 f(u(y))dy for z ∈ Ix,µ(Rn). (3.5)
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Consequently, for any x ∈ R
n and µ < 1, we have that for z ∈ R

n \ {0} ∪Bµ(x),

u(z)− (u)x,µ(z) =

∫

|y−x|>µ
E(x, y, µ, z) [f(u(y))− f(ux,µ(y))] dy,

where

E(x, y, z, µ) := |z − y|6−n −
( |z − x|

µ

)6−n

|Ix,µ(z)− y|6−n (3.6)

is used to estimate the difference between u and its Kelvin transform ux,µ. Finally, using its decay
properties, it is straightforward to check that E(x, y, z, µ) > 0 for all |z − x| > µ > 0, which
concludes the proof. �

Next, let us introduce the critical sliding parameter as the supremum for which an inequality
relating a component function and its Kelvin transform is satisfied.

Definition 3.7. Given x ∈ R
n, let us define

µ∗(x) = sup {µ > 0 : (u)x,r 6 u in R
n \Br(x) for any 0 < r < µ} . (3.7)

Since u is such that −∆u > 0 and ∆2u > 0, we get µ∗(x) > 0.

The next lemma is essentially the moving spheres technique in its integral form. This method
provides the exact form for any blow-up limit solution to (P6,∞), which depends on whether the
critical sliding parameter µ∗(x) is finite or infinite.

Lemma 3.8. Let u ∈ C6(Rn \{0}) be a positive singular solution to (P6,∞), z ∈ R
n and µ∗(z) > 0

given by (3.7). The following holds:

(i) if µ∗(x) <∞ is finite, then ux,µ∗(x) = u in R
n \ {0, x}.

(ii) if µ∗(x0) = ∞, for some x0 ∈ R
n, then µ∗(x) = ∞ for all x ∈ R

n \ {0}.

Proof. Without loss of generality, we may assume x0 = 0. Let us fix µ∗ = µ∗(0) and (u)µ = (u)0,µ.
By the definition of µ∗(x) > 0, we have (u)µ∗(x) 6 u(x) for all |x| > µ∗. Thus, by (3.5), with x = 0
and µ = |x| > µ∗, and the positivity of the kernel E(0, y, z, µ) given by (3.6), either uµ∗(y) = u(y)
for all |x| > µ∗ or (u)µ∗(y) < (u)(y) for all |x| > µ∗. In the former case, the conclusion easily
follows. In the sequel, we assume that the last condition holds. Hence, the integral representation
in Proposition 2.1 yields

lim inf
|z|→∞

|z|n−6 [u(z)− (u)µ∗(z)] = lim inf
|z|→∞

∫

|y|>µ∗

|z|n−6E(0, y, z, µ∗) [f(u(y))− f(uµ∗(y))] dy

>

∫

|y|>µ∗

(
1−

(
µ∗

|y|

)n−6
)
[f(u(y))− f(uµ∗(y))] dy > 0,

which implies that there exists ε1 ∈ (0, 1) satisfying u(z)− (u)µ∗(z) > ε1|z|6−n for all |z| > µ∗ +1.
Moreover, there exists ε2 ∈ (0, ε1) such that, for |z| > µ∗ + 1 and µ∗ 6 µ 6 µ∗ + ε2, we find

(u− (u)µ∗) (z) > ε1|z|6−n + ((u)µ∗ − (u)µ) (z) >
ε1
2
|z|6−n. (3.8)
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Whence, for any ε ∈ (0, ε2) (to be chosen later), µ∗ 6 µ 6 µ∗ + ε, and µ 6 |y| 6 µ∗ + 1, we have

(u− (u)µ∗) (z) =

∫

|y|>µ
E(0, y, z, µ) [f(u(y))− f(uµ(y))] dy

>

∫

µ∗6|y|6µ∗+1
E(0, y, z, µ) [f(uµ∗(y))− f(uµ(y))] dy

+

∫

µ∗+26|y|6µ∗+3
E(0, y, z, µ) [f(u(y))− f(uµ(y))] dy.

Now using (3.8), there exists δ1 > 0 such that f(u(y)) − f(uµ(y)) > δ1 for µ∗ + 2 6 |y| 6 µ∗ + 3.
Since E(0, y, z, µ) = 0 for all |z| = µ and

∇zE(0, y, z, µ) · z
∣∣
|z|=µ

= (n− 4)|z − y|8−n
(
|z|2 − |y|2

)
> 0 for all µ∗ + 2 6 |y| 6 µ∗ + 3,

where δ2 > 0 is a constant independent of ε. Then, there exists C1 > 0 such that, for
µ∗ 6 µ 6 µ∗ + ε, we get

|f(u(y))− f(uµ∗(y))| 6 C1(µ− µ∗) 6 C1ε for all µ∗ 6 µ 6 |y| 6 µ∗ + 1.

Furthermore, recalling that µ 6 |z| 6 µ∗ + 1, one can find C2 > 0 such that

∫

µ6|y|6µ∗

E(0, y, z, µ)dy 6

∣∣∣∣∣

∫

µ6|y|6µ∗+1

[
|y − z|6−n − |Iµ(z)− y|8−n +

(
µ

|z| − 1

)n−6

|Iµ(z)− y|n−4

]
dy

∣∣∣∣∣
6 C2 |Iµ(z)− z|+C2(|z| − µ) 6 C2(|z| − µ),

which, provides that for small 0 < ε≪ 1, µ∗ 6 µ 6 µ∗ + ε, and µ 6 |z| 6 µ∗ + 1, it follows

(u− (u)µ∗) (z) > −C2ε

∫

µ6|y|6µ∗+1
E(0, y, z, µ)dy + δ1δ2(|z| − µ)

∫

µ∗+26|z|6µ∗+3
dy

>

(
δ1δ2

∫

µ∗+26|y|6µ∗+3
dz − C2ε

)
(|z| − µ)

> 0.

This is a contradiction to the definition of µ∗(x) > 0. Therefore, the first part of the lemma is
established.

Next, by the definition of µ∗(x) > 0, we know that ux,µ(z) 6 u(z) for all 0 < µ < µ∗(x), with
|z − x| > µ; thus, multiplying it by |z|n−6, and taking the limit as |z| → ∞, yields

ℓ = lim inf
|z|→∞

|z|n−6|U(z)| > µn−6|U(z)| for all 0 < µ < µ∗(x). (3.9)

On the other hand, if µ∗(x0) < ∞, multiplying the identity obtained in (i) by |z|n−6 and passing
to the limit when |z| → ∞, we obtain

ℓ = lim
|z|→∞

|z|n−6f(u(z)) = µ∗(x0)
n−6f(x0) <∞. (3.10)

Finally, by (3.9) and (3.10), if there exists x0 ∈ R
n such that µ∗(x0) <∞, then µ∗(x) <∞ for all

x ∈ R
n. �

Proof of Proposition 3.1. Using Lemma 3.8, we can apply [21, Proposition 2.1] to conclude that
singular positive solutions to (P6,∞) are radially symmetric with respect to the origin. The proof
that they are radially monotonically decreasing will be given in the next section (See Proposition 4.1
(iii)). �
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4. ODE analysis

This section is devoted to the classification of (positive) solutions to the problem (O6). The
positivity will not play a role here. Our strategy here is inspired by the methods in [15, 17, 35]
and relies on the decomposition in Proposition 2.7. It is outstanding to recover such properties for
solutions to sixth order ODE with possibly chaotic dynamical behavior near equilibrium points.

The next classification result will be the key part of the proof of our main theorem

Proposition 4.1. Let v ∈ C6(R) be a solution to (O6).

(i) Then,
inf
R

|v| 6 a∗n (4.1)

with equality holding if, and only if, v is a nonzero constant function.
(ii) Conversely, if a0 ∈ (0, a∗n), then there exists a unique (up to translations) bounded solution

v ∈ C6(R) to (O6) such that infR |v| = a0. This solution is periodic, has a unique local
maximum and minimum per period, and is symmetric with respect to its local extrema.

(iii) Moreover, if v is positive, then v(1) − γnv < 0 in R.

We begin with some preliminary remarks.

Remark 4.2. Notice that v ≡ 0 and v ≡ a∗n, where a
∗
n > 0 is given by (2.9) are exactly the only

three constant solutions to (O6). Moreover, if v(·) is a solution to (O6),

• then v(−·) also is a solution to (O6) since it contains only even order derivatives;
• then −v(·) also is a solution to (O6) since G is odd;
• then v(·+ T ) for any T ∈ R is also a solution to (O6) since it is autonomous.

To prove our main proposition in this section, we will need some auxiliary results quantifying
the intuition that the set of bounded solutions to the higher order equation (O6) behaves in some
respects similar to the set of solutions to a second order equation. As we pointed out before, for
this it is crucial that the relation (2.4) holds.

4.1. Boundedness. The following lemma states that solutions to (O6) are bounded, which is one
of the key new results in this manuscript. The proof is based solely on the conservation of energy,
as so is independent of the rest of the argument.

Lemma 4.3. Let v ∈ C6(R) be a solution to (O6). Then v is bounded.

Proof. Initially, by transforming τ = −t, without loss of generality it is enough to prove that v is
bounded on [0,∞).

Indeed, for any solution v ∈ C6(R), we set

Z+(v) = Z
(1)
+ (v) ∩ Z(2)

+ (v), (4.2)

where
Z

(1)
+ (v) = {t > 0 : v(1)(t) = 0} and Z

(2)
+ (v) = {t > 0 : v(2)(t) = 0}.

In what follows, we have two cases to study:
Case 1. Z+(v) is bounded.
In this case, using Lemma 4.8, we get that v is monotone for t≫ 1 large enough, and thus admits
a finite limit a+ := limt→∞ v(t) <∞. Therefore, v is bounded on [0,∞).

Next, we show that the other possibility cannot happen.
Case 2. Z+(v) is unbounded.
Now, since F (v) → ∞ as |v| → ∞, there exists an R > |v(0)| such that F (v) > Hv for
all |v| > R. Also, notice that |v| < R in [0,∞). Indeed, by contradiction assume that
MR := {t > 0 : |v(t)| > R} 6= ∅. We set t∗ := infR+ MR.
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In addition, because |v(0)| < R, we must have t∗ > 0 and |v(t∗)| = R. Replacing v(t) by −v(t) if
necessary and observing that it does not change the set Z+(v), we may assume that v(t∗) = R.

Hence, we also find v(1)(t∗) > 0 and v(2)(t∗) > 0. Using that Z+(v) is unbounded, we have that

−∞ < T := inf(Z+(v) ∩ (t∗,∞)) is well-defined, which, by continuity of v(1) and v(2), yields
v(1)(T ) = v(2)(T ) = 0 and min{v(1), v(2)} > 0 in [t∗, T ]. Consequently, we get v(T ) > v(t∗) = R,
from which we deduce

H(v)(T ) =
1

2
v(3)(T )2 + F (v(T )) > F (v(T )) > Hv,

which is a contradiction with the energy conservation (2.10) in Proposition 2.10.
The proof is finished. �

4.2. Comparison. The first result states that any bounded entire solution to (O6) is uniquely
determined by only two (instead of 6) initial values.

Lemma 4.4. Let v1, v2 ∈ C6(R) be bounded solutions to (O6). If v1(0) = v2(0) and v
(1)
1 (0) =

v
(1)
2 (0). Then v1 ≡ v2.

Proof. Let v1, v2 ∈ C6(R) be bounded solutions to (O6) which satisfy the initial conditions

v1(0) = v2(0) and v
(1)
1 (0) = v

(1)
2 (0). By interchanging v1 and v2 or replacing v1(t) and v2(t) by

v1(−t) and v2(−t)), we may assume without loss of generality that v
(j)
1 (0) > v

(j)
2 (0) for j = 2, 3, 4, 5.

Suppose, by contradiction, that v1 6≡ v2. Then, by standard uniqueness result for ODEs, we

have that v
(j)
1 (0) 6= v

(j)
2 (0) for j = 2, 3, 4, 5. In both cases, we deduce from our hypotheses on the

initial conditions v(t) > w(t) on (0, τ) for some sufficiently small 0 < τ ≪ 1.
Let {λ1, λ2, λ3} ⊂ R be given by (2.6). Using the decomposition in Proposition 2.7, let us set

the auxiliary functions {Φ1,Φ2,Φ3} ⊂ C6(R) defined as

Φ1 := Lλ1 , Φ2 := Lλ1 ◦ Lλ2 , and Φ3 := Lλ1 ◦ Lλ2 ◦ Lλ3 . (4.3)

By the contradiction assumption, we have

(Φ2(v1)− Φ2(v2))(0) > 0 and (Φ2(v1)− Φ2(v2))
(1)(0) > 0 (4.4)

and
(Φ1(v1)− Φ1(v2))(0) > 0 and (Φ1(v1)−Φ1(v2))

(1)(0) > 0. (4.5)

Also, using that v1 and v2 satisfy (O6), we find

−Lλ3(Φ2(v1)− Φ2(v2)) = f(v2(t))− f(v1(t)) for all t ∈ R.

Next, using that v1(t) > v2(t) on (0, τ) and the strictly monotonicity of since the function
u 7→ f(u), we get

− Lλ3(Φ2(v1)− Φ2(v2))(t) > 0 for all t ∈ (0, τ). (4.6)

Hence, from (4.4) and (4.6), we easily find that (Φ2(v1) − Φ2(v2))(t) > 0 for t ∈ (0, τ), or
equivalently,

− Lλ2(Φ1(v1)− Φ1(v2))(t) = Φ2(v1)− Φ2(v2)(t) > 0 for all t ∈ (0, τ). (4.7)

Whence, from (4.5) and (4.7), we easily find that (Φ1(v1) − Φ1(v2))(t) > 0 for t ∈ (0, τ), or
equivalently,

(v1 − v2)
(2)(t) > λ1(v1 − v2)(t) > 0 for all t ∈ (0, τ). (4.8)

By the hypotheses, we have (v1 − v2)
(1)(0) > 0, which combined with λ3 > 0 and (4.8) implies

that (v1 − v2)
(1)(t) > 0 for all t ∈ (0, τ). Thus, v1 − v2 is strictly increasing on (0, τ), and since

0 < τ ≪ 1 was arbitrarily small such that v1 − v2 > 0 on (0, τ), we conclude that v1 − v2 > 0 for
all t ∈ R.
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Repeating the above arguments for the interval (0,∞) instead of (0, τ), we get from (4.8) that

(v1− v2)(1) is positive and strictly increasing on (0,∞), which clearly contradicts the boundedness
of v1 − v2. This shows that v1 ≡ v2, and concludes the proof of this lemma. �

As a consequence, we have the following symmetry result

Corollary 4.5. Let v ∈ C6(R) be a bounded solution to (O6).

(i) If v(1)(t0) = 0 for some t0 ∈ R, then v is symmetric with respect to t0, that is
v(t0 + t) = v(t0 − t) for all t ∈ R;

(ii) If v(t0) = 0 for some t0 ∈ R, then v is anti-symmetric with respect to t0, that is,
v(t0 − t) = −v(t0 + t) for all t ∈ R.

Proof. To prove (i), notice that since (O6) is autonomous, we may assume t0 = 0. Moreover,
if v is a solution to (O6), then v̂(t) := v(−t) also is. Hence v(0) = v̂(0) and, by assumption,

v(1)(0) = v̂(1)(0) = 0, which by Lemma 4.4 gives v ≡ v̂.
To prove (ii), we use the same strategy. �

With a similar proof, we can also prove the following comparison

Lemma 4.6. Let v1, v2 ∈ C6(R) be bounded solutions to (O6). Suppose that

v1(0) > v2(0)

v
(1)
1 (0) > v

(1)
2 (0)

Lλ1(v1(0)) > Lλ1(v2(0))

L
(1)
λ1

(v1(0)) > L
(1)
λ1

(v2(0))

(Lλ1 ◦ Lλ2)(v1(0)) > (Lλ1 ◦ Lλ2)(v2(0))

(Lλ1 ◦ Lλ2)
(1)(v1(0)) > (Lλ1 ◦ Lλ2)

(1)(v2(0)).

Then v1 ≡ v2.

Proof. Follows the same strategy as in Lemma 4.4 �

4.3. Asymptotics. This subsection is devoted to the study of some asymptotic properties for
solutions to (O6).

First, it is convenient to introduce the following definition

Definition 4.7. For any v ∈ C6(R) solution to (O6), let us define its asymptotic set by

A(v) :=

{
ℓ ∈ R ∪ {±∞} : lim

t→±∞
v(t) = ℓ

}
.

In other words, A(v) is the set of all possible limits at infinity of v.

The content of the following lemma shows that (O6) does not possess a solution that tends to
either plus or minus infinity at infinity, that is, a solution that blows up does it in finite time.

Lemma 4.8. Let v ∈ C6(R) be a solution to (O6). If ℓ± := limt→±∞ v(t) ∈ R ∪ {±∞} exists,
then ℓ± ∈ R.

Proof. Initially, notice that by interchanging v(t) by v(−t), it is only necessary to consider the
case t→ +∞.

Suppose by contradiction that the lemma does not hold. Thus, one of the following two
possibilities shall happen: either the asymptotic limit of v is a finite constant ℓ+ > 0, which
does not belong to the asymptotic set A, or the limit blows up, that is, ℓ+ = +∞.
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Let us consider these two cases separately:
Case 1: ℓ+ ∈ [0,∞) \ {0, a∗n}.
By assumption, we have

lim
t→∞

(K0v(t)− f(v(t))) = κ, where κ := K0ℓ+ − f(ℓ+) 6= 0, (4.9)

which implies

K0v(t)− f(v(t)) = v(6)(t)−K4v
(4)(t) +K2v

(2)(t). (4.10)

Hence, combining (4.9) with (4.10) implies that for any ε > 0 there exists T ≫ 1 sufficiently large
satisfying

κ− ε < v(6)(t)−K4v
(4)(t) +K2v

(2)(t) < κ+ ε. (4.11)

Now, integrating (4.11), we obtain
∫ t

T
(κ− ε)dτ <

∫ t

T

[
v(6)(τ)−K4v

(4)(τ) +K2v
(2)(τ)

]
dτ <

∫ t

T
(κ+ ε)dτ,

which yields

(κ− ε)(t− T ) + C1(T ) < v(5)(t)−K4v
(3)(t) +K2v

(1)(t) < (κ+ ε)(t− T ) + C1(T ), (4.12)

for some C1(T ) > 0. Defining δ := supt>T |v(t)− v(T )| <∞, we obtain
∣∣∣∣
∫ t

T
K4v

(3)(τ)dτ

∣∣∣∣ 6 |K4|δ and

∣∣∣∣
∫ t

T
K2v

(1)(τ)dτ

∣∣∣∣ 6 |K2|δ,

which, by integrating (4.12), gives us

(κ− ε)

2
(t− T )2 + L(t) < v(4)(t) <

(κ+ ε)

2
(t− T )2 +R(t), (4.13)

where L(t), R(t) ∈ O(t2), namely

L(t) = C1(T )(T − t)− |K4|δ − |K2|δ + C2(T )

and

R(t) = C1(T )(T − t) + |K4|δ + |K2|δ +C2(T ),

for some C2(T ) > 0.
Then, repeating the same integration procedure in (4.13), we find

(κ− ε)

6!
(t− T )6 +O(t6) < v(t) <

(κ+ ε)

6!
(t− T )6 +O(t6) as t→ ∞. (4.14)

Therefore, since κ 6= 0 we can choose 0 < ε ≪ 1 sufficiently small such that κ − ε and κ+ ε have
the same sign. Finally, by passing to the limit as t → ∞ on inequality (4.14), we obtain that v
blows-up and ℓ+ = ∞, which is contradiction. This concludes the proof of the first case.

The second case requires a suitable choice of test functions, which is inspired in [30].
Case 2: ℓ+ = +∞.
Let φ0 ∈ C∞([0,∞]) be a nonnegative function satisfying φ0 > 0 in [0, 2),

φ0(z) =

{
1, for 0 6 z 6 1,

0, for z > 2,

and, let us fix the positive constants

Mj :=

∫ 2

0

|φ(j)0 (z)|
|φ0(z)|

dz for j = 1, 2, 3, 4, 5, 6. (4.15)
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Using the contradiction assumption, we may assume that there exists T > 0 such that for t > T ,
it follows

v(6)(t)−K4v
(4)(t) +K2v

(2)(t) = K0v(t)− f(v(t)) >
1

2
f(v(t)) (4.16)

and

v(5)(t)−K4v
(3)(t) +K2v

(1)(t) =
1

2

∫ t

T
f(v(τ))dτ + C1(T ). (4.17)

Besides, as a consequence of (4.17), we can find T ∗ > T satisfying

v(5)(T ∗)−K4v
(3)(T ∗) +K2v

(1)(T ∗) := υ > 0.

Furthermore, since (O6) is autonomous, we may suppose without loss of generality that T ∗ = 0.
Then, multiplying inequality (4.16) by φ(t) = φ0(τ/t), and by integrating, we find

∫ T ′

0

[
v(6)(τ)φ(τ) −K4v

(4)(τ)φ(τ) +K2v
(2)(τ)φ(τ)

]
dτ >

1

2

∫ T ′

0
v(τ)dτ,

where T ′ = 2T . Moreover, integration by parts combined with φ(j)(T ′) = 0 for j = 0, 1, 2, 3, 4, 5
implies

∫ T ′

0

[
v(τ)φ(6)(τ)−K4v(τ)φ

(4)(τ) +K2v(τ)φ
(2)(τ)

]
dτ >

1

2

∫ T ′

0
f(v(τ))dτ + υ. (4.18)

On the other hand, applying the Young inequality on the right-hand side of (4.18), it follows

v(τ)|φ(j)(τ)| = εv
n+6
n−6 (τ)φ(τ) +Cε

|φ(j)(τ)|n+6
12

φ(τ)
n−6
12

for j = 0, 1, 2, 3, 4, 5. (4.19)

Hence, combining (4.19) and (4.18), we have that for 0 < ε ≪ 1 sufficiently small, it follows that

there exists C̃1 > 0 satisfying

C̃1

∫ T ′

0

[
|φ(6)(τ)|n+6

12

φ(τ)
n−6
12

+
|φ(4)(τ)|n+6

12

φ(τ)
n−6
12

+
|φ(2)(τ)|n+6

12

φ(τ)
n−6
12

]
dτ >

1

6

∫ T ′

0
f(v(τ))dτ + υ.

Now, by (4.15), one can find C̃2 > 0 such that

C̃2

(
M6T

−n+4
2 −M4T

−n+3
3 +M2T

−n
6

)
>

1

6

∫ T

0
f(v(τ))dτ. (4.20)

Therefore, passing to the limit in (4.20) the left-hand side converges, whereas the right-hand side
blows-up; this is a contradiction.

For proving the second part, let us notice that

lim
t→∞

H(t, v) =

(
F (ℓ+)−

K0

2
ℓ2+

)
> 0,

which implies ℓ∗ = 0 and H(v) = 0. �

Lemma 4.9. Let v ∈ C6(R) be a positive solution to (O6). Assume that v is a non-constant
function, and denote by {sk}k∈N and {Sk}k∈N its sets of local minimum and maximum points of
v, respectively. Then, it holds that v(Sk) > a∗n and v(sk) < a∗n for any k ∈ N.

Proof. Let us assume by contradiction that there exists a maximum point t = t0 of v such that
v(t0) 6 a∗n and v(1)(t0) = 0, v(2)(t0) 6 0. Notice that from (O6), we have two possibilities which
we describe as follows
Case 1. v(t0) = a∗n, v

(2)(t0) = 0, v(4)(t0) = 0, and v(6)(t0) = 0.
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Initially, we observe that v(3)(t0) = 0 and v(5)(t0) = 0. Otherwise, without loss of generality, we

may suppose that v(3)(t0) > 0 or v(5)(t0) > 0. If, v(3)(t0) > 0, by an elementary analysis, we

deduce that there exists δ > 0 satisfying v(2)(t) > 0 and v(1)(t) > 0 in (t0, t0+ δ). This contradicts

the fact the point t = t0 is a local maximum of v(t). If, v(5)(t0) > 0, we can apply the same
strategy. Then, by the uniqueness, we get that v(t) ≡ a∗n, which is impossible.

Case 2. v(6)(t0) = K4v
(4)(t0)−K2v

(2)(t0)− g(v(t0)) < 0.

Now, notice that for some small ε > 0 it follows v(6)(t) < 0 for t ∈ (t0, t0 + ε) . In this case, we

assume v(3)(t0) 6 0 and v(5)(t0) 6 0, which gives us v(1)(t) < 0, v(3)(t) < 0 and v(5)(t) < 0 for
t ∈ (t0, t0 + ε). Now, setting

t1 = sup
{
t̃ > t0 : v

(1)(t) < 0, v(3)(t) < 0, and t ∈ (t0, t̃)
}
.

we have that since v oscillates, it follows that t1 < ∞ and either v(1)(t1) = 0, v(3)(t1) = 0, or

v(5)(t1) = 0 because of continuity. This implies that E1(v(t1))v(1)(t1) = 0. Moreover, since v(2) is

decreasing in (t0, t1), combined with v(2)(t0) 6 0, we obtain that H2(v)v
(2) is increasing in (t0, t1).

Putting these together and remembering that v(1)(t0) = 0, it follows from Proposition 2.10 that
the equality holds

1

2
v(3)(t1)

2 − K2

2
v(1)(t1)

2 +G(v(t1)) =
1

2
v(3)(t0)

2 +G(v(t0)),

which yields

G(v(t0))−G(v(t1)) =
1

2
(v(3)(t1)− v(3)(t0))

2 − K2

2
v(1)(t1)

2 > 0.

On the other hand, since v(t1) < v(t0) 6 a∗n, it is straightforward to see that G(v(t1)) > G(v(t0));
this contradicts the last identity. The proof of the first case is finished.

Similarly, we can prove the second part for local minimum points of v, and this concludes the
proof of the lemma. �

The following lemma shows that when a solution tends to a limit monotonically, then it has to
be an equilibrium point.

Lemma 4.10. Let v ∈ C6(R) be a bounded solution to (P6,∞). If v is eventually monotone at

infinity, that is, limt→±∞ sign(v(1)(t)) 6= 0, then

lim
t→±∞

v(t) ∈ {0,±a∗n} and lim
t→±∞

v(j)(t) = 0 for j = 1, . . . , 5.

In other terms,

A(v) = {0,±a∗n} and A(v(j)) = {0} for j = 1, . . . , 5.

Proof. By interchanging v(t) by v(−t), we may assume that limt→+∞ sign(v(1)(t)) 6= 0. Then,
there exists the limit

lim
t→+∞

v(t) := ℓ0

and v increases towards ℓ0 as t→ +∞. Since v is bounded, ℓ0 < +∞.
Claim 1: limt→ v(4)(t) = 0 and limt→ v(2)(t) = 0 as t→ +∞.

Let us define the function Υ1(v) = v(5) −K4v
(3) +K2v

(1), which satisfies Υ
(2)
1 (v) = v(1)g(v). Now

we have to consider two cases:
Case 1: g(1)(ℓ0) 6= 0

In this case, g(1)(v) has a sign for T ≫ 1 large enough, that is, either g(1)(v) > 0 or g(1)(v) 6 0

for large T ≫ 1. In addition, since v(1) > 0, it follows limt→∞ sign(Υ
(2)
1 (v(t))) 6= 0, which implies

that Υ
(2)
1 (v(t)) has a sign for T ≫ 1 large enough; thus by a comparison principle Υ1(v(t)) also
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does. Furthermore, because Υ1(v(t)) = v5(t) − K4v
(3)(t) +K2v

(1)(t) has a sign for T ≫ 1 large
enough, we find the the following limit exists:

lim
t→+∞

(
v(4)(t)−K4v

(2)(t) +K2v(t)
)
:= ℓ1.

Consequently, we get

lim
t→+∞

(
v(4)(t)−K4v

(2)(t)
)
:= ℓ1 −K2ℓ0. (4.21)

Defining Υ2(v) := v(2) − K4v, we get limt→+∞Υ
(2)
2 (v) 6= 0, that is, Υ2(v(t)) has a sign for

T ≫ 1 large enough. Hence, by a comparison principle Υ2(v(t)) also does. Moreover, since

Υ2(v(t)) = v(2)(t)−K4v(t) has a sign for T ≫ 1 large enough, we get that the the following limit
exists

lim
t→+∞

(
v(2)(t)−K4v(t)

)
:= ℓ2.

Therefore, we conclude v(2)(t) → ℓ2 +K4ℓ0 as t→ ∞, which by the boundedness of v, proves that

v(2)(t) → 0 as t→ +∞. Finally, going back to (4.21), we find v(4)(t) → 0 as t→ +∞.

Case 2: g(1)(ℓ0) = 0

In this case, we can define Υ̃1(v) = v(5) −K4v
(3) + K2

2 v
(1) and Υ̃2(v) = v(4) − K4

2 v
(2) and proceed

as before to conclude the proof.
We finished the proof of the first claim
At last, using that v(2)(t) → 0 and v(4)(t) → 0 as t → +∞, one can prove that v(1)(t) → 0 and

v(3)(t) → 0 as t→ +∞. Since, we can write (O6) as

v(6) = K4v
(4) −K2v

(2) − g(v) in R,

it holds

lim
x→+∞

v(6)(t) := ℓ3 = g(ℓ0).

Therefore, v is bounded, we find ℓ3 = 0, and thus ℓ0 ∈ A(v). By this discussion, it is easy now to

see that A(v(j)) = 0 for j = 1, 2, 3, 4, 5, which concludes the proof of the lemma. �

4.4. Ordering. Now we prove that, as in the lower order cases, the Hamiltonian energy is a
parameter that orders bounded solutions in the (v, v(1))-phase plane.

Our first technical lemma is a sign property for some terms of the Hamiltonian energy associated
to (O6), which will be important in our upcoming arguments. Although, our results ares similar
in spirit to the one in [35, Lemma 5], we provide a shorter proof, which also works in our sixth
order situation.

Lemma 4.11. Let v ∈ C6(R) be a bounded solution to (O6). The following sign identities hold

(i) sign(v(1)) = sign(E1(v));
(ii) sign(v(2)) = sign(E2(v)).

where E1(v), E2(v) the auxiliary functions given by (2.12).

Proof. The proof will be divided into three steps.
Step 1. There exist α1, α2 > 0 (depending only on K2,K4) such that

0 < Ψ1,α1(v)v
(1) < E1(v)v(1) and 0 < Ψ2,α2(v)v

(2) < E2(v)v(2),
where

Ψ1,α1(v) = v(5) −K4v
(3) + α1v

(1) and Ψ2,α2(v) = −v(4) + α2v
(2).
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Notice that since

E1(v)v(1) = Ψ1,α1(v)v
(1) −

√(
K2

2
− α1

)
v(1)

2
,

and

E2(v)v(2) = Ψ2,α2(v)v
(2) −

√(
K4

2
− α2

)
v(2)

2
,

there exists C1, C2 > 0 (depending only on K0,K2) such that

E1(v)v(1) = Ψ1,α1(v)v
(1) +

√
C1v

(1)2 > Ψ1,α1(v)v
(1), (4.22)

and

E2(v)v(2) = Ψ2,α2(v)v
(2) +

√
C2v

(2)2 > Ψ2,α2(v)v
(2), (4.23)

which proves the first claim.
Now, we are left to study the sign of these auxiliary terms.
Let us start with the term related to the first derivative. For this, we observe that Ψ1,α1(v) can

be written as a positive fourth order operator on v(1).
Step 2. sign(v(1)) = sign(Ψ1,α1(v)).

We divide the remaining part of the proof into will be divided into two cases.
Case 1. If v(1) > 0, then Ψ1,α1(v) > 0.

Let t0 ∈ R be arbitrary. We may assume that v(1)(t0) > 0. We see from Corollary 4.5 that

Claim 2 holds if v(1)(t0) = 0. We thus assume that v(1)(t0) > 0. Since v is bounded there exist

−∞ 6 t1 < t0 < t2 6 ∞ such that v(1)(t1) = v(1)(t2) = 0 and v(1) < 0 in (t1, t2). By Corollary 4.5
and Lemma 4.10, we get that v(3)(t1) = v(3)(t2) = 0, which implies Ψ1,α1(v(t1)) = Ψ1,α1(v(t2)) = 0.
Thus, we arrive at the following system

{
(Lα+

1
◦ Lα−

1
)(v(1)) = Ψ1,α1(v) in (t1, t2).

Lα−

1
(v(1)(t1)) = Lα−

1
(v(1)(t2)) = v(1)(t1) = v(1)(t2) = 0,

(4.24)

where α+
1 + α−

1 = K4 and α+
1 α

−
1 = α1.

Next, suppose by contradiction that Ψ1,α1(v(t0)) 6 0. Hence, using the maximum principle in

(4.24), it follows that v(1)(t0) < 0, which is a contradiction. The first case is proved.
For the second case, the idea is similar.

Case 2. If v(1) < 0, then Ψ1,α1(v) < 0.

When v(1)(t0) < 0, as before one can find −∞ 6 t1 < t0 < t2 6 ∞ such that v(1) < 0 in (t1, t2) and
(4.24) holds. Using the same contradiction argument, suppose that there exists t0 ∈ (t1, t2) such

that Ψ1,α1(v(t0)) > 0. By the minimum principle applied to (4.24), we find v(1)(t0) > 0, which is
also a contradiction. This finishes the proof of the second claim.

The study of the remaining term is less complicated and direct application of a comparison
principle. Indeed, notice that Ψ2,α2(v) can be written as a positive second order operator on v(2).

Step 3. sign(v(2)) = sign(Ψ2,α2(v)).
As before, we must study two cases as follows.
Case 1. If v(2) > 0, then Ψ2,α2(v) > 0.

In fact, we may assume that v(2)(t0) > 0. We know from Corollary 4.5 that Claim 2 holds if

v(2)(t0) = 0. We thus assume that v(2)(t0) > 0. Since v is bounded there exist −∞ 6 t1 < t0 <

t2 6 ∞ such that v(2)(t1) = v(2)(t2) = 0 and v(2) > 0 in (t1, t2). By Corollary 4.5 and Lemma 4.10,

we get that v(4)(t1) = v(4)(t2) = 0, which implies Lα2(v
(2)(t1)) = Lα2(v

(2)(t2)) = 0.
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Now, it is convenient to write{
−Lα2(v

(2)) = Ψ2,α2(v) in (t1, t2)

Lα2(v
(2)(t1)) = Lα2(v

(2)(t2)) = 0.
(4.25)

It is straightforward to check that Ψ2,α2(v(t0) > 0. Otherwise, we would have Ψ2,α2(v(t0) < 0.

Thus, by the maximum principle, v(2)(t0) < 0, which contradicts the assumption.
The second case has a similar proof.

Case 2. If v(2) < 0, then Ψ2,α2(v) < 0.

When v(2)(t0) < 0, as before one can find −∞ 6 t1 < t0 < t2 6 ∞ such that v(2) < 0 in (t1, t2)
and (4.25) holds. Again, the same argument by contradiction based on the minimum principle
yields Ψ2,α2(v(t0)) < 0.

The conclusion is a direct consequence of Steps 1, 2 and 3. �

Remark 4.12. Using the same ideas one can also verify the sign identity below

sign(v(1)) = sign(E1(v) − v(5)) = sign(Ψ1,α1(v)− v(5)) = sign(−K4v
(3) + α1v

(1)), (4.26)

where α1 ∈ (0, K2
2 ] is such that (4.22) holds.

As a consequence of the last lemma, we find two energy inequalities for solutions to (O6).

Corollary 4.13. Let v ∈ C6(R) be a bounded solution to (O6). The following energy identity
holds:

−R(v) := −H(v) +G(v) +
1

2
v(3)

2
6 0. (4.27)

Proof. Initially, notice that using (2.11), we get

−R(v) := −[E1(v)v(1) + E2(v)v(2)], (4.28)

which combined with Lemma 4.11 implies (4.27), and so the proof is concluded. �

The next comparison lemma is a preparation for proving the energy ordering. Subsequently,

we will focus on the situation v
(1)
1 (0) > v

(1)
2 (0) > 0. By symmetry, the same strategy applies

otherwise. This result is a weaker version of Lemma 4.4, and strongly relies on the energy identity
in Corollary 4.13. It shows that to prove uniqueness of solutions to (O6), one only needs three
initial conditions instead of six as usual.

Lemma 4.14. Let v1, v2 ∈ C6(R) be bounded solutions to (O6). Suppose that H(v1) 6 H(v2), and

v1(0) = v2(0), v
(1)
1 (0) > v

(1)
2 (0) > 0, v

(2)
1 (0) = v

(2)
2 (0), and v

(3)
1 (0) = v

(3)
2 (0). (4.29)

Then, v1 ≡ v2.

Proof. Initially, using (4.29), it is not hard to check that

Lλ1(v1(0)) > Lλ1(v2(0)) and L
(1)
λ1

(v1(0)) > L
(1)
λ1

(v2(0)). (4.30)

Next, from (4.22) and (4.28) at t = 0, we have

−R(v1(0)) = −H(v1(0)) +G(v1(0)) +
1

2
v
(3)
1 (0)2

and

−R(v2(0)) = −H(v2(0)) +G(v2(0)) +
1

2
v
(3)
2 (0)

2
.

Also, using (4.29), it follows

−H(v1(0)) +G(v1(0)) +
1

2
v
(3)
1 (0)

2
6 −H(v2(0)) +G(v2(0)) +

1

2
v
(3)
2 (0)

2
6 0.
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This combined with Corollary 4.13 gives us

−R(v1(0)) 6 −R(v2(0)) 6 0. (4.31)

From this, we obtain two identities as follows

0 6

[
E1(v2)v(1)2 − E1(v1)v(1)1

]
(0) 6 [E1(v2(0)) − E1(v1(0))] v(1)2 (0)

and

0 6

[
E2(v2)v(2)2 − E2(v1)v(2)1

]
(0) 6 [E2(v2(0)) − E2(v1(0))] v(2)2 (0),

which yields
E1(v2(0)) > E1(v1(0)) and E2(v2(0)) > E2(v1(0)). (4.32)

Now, by combining (4.32) and (4.29), we get respectively

v
(5)
1 (0) > v

(5)
2 (0) and v

(4)
1 (0) 6 v

(4)
2 (0).

Therefore, we conclude
(Lλ1 ◦ Lλ2)(v1(0)) > (Lλ1 ◦ Lλ2)(v2(0)). (4.33)

and
(Lλ1 ◦ Lλ2)

(1)(v1(0)) > (Lλ1 ◦ Lλ2)
(1)(v2(0)). (4.34)

Finally, using (4.29), (4.30), (4.33) and (4.34), we can apply Lemma 4.6 to finish the proof. �

In what follows, let [t1, t2] ⊂ R denote intervals where the functions v(1), v(2) are strictly
monotone on (t1, t2). In this fashion, denoting the inverse of v(t) by t(v), we define the change of
variables

s = v and ζ(s) =
[
v(1)(t(s))

]2
. (4.35)

Now for s ∈ [s1, s2] = [v(t1), v(t2)], we have

ζ(1)(s) = 2v(2)(t(s)) and ζ(2)(s) = 2v(3)(t(s)).

If t1 = −∞, then we write ζ(1)(s1) = lims→s1 ζ
(1)(t) and ζ(2)(s1) = lims→s1 ζ

(2)(t). In the same

way, if t2 = +∞, then we write ζ(1)(s2) = lims→s2 ζ
(1)(t) and ζ(2)(s2) = lims→s2 ζ

(2)(t). Notice
that these two limits exist as a consequence of Lemma 4.10.

We are ready prove the energy ordering lemma, which is another crucial result in this manuscript.

Lemma 4.15. Let v1, v2 ∈ C6(R) be bounded solutions to (O6). Suppose that v1(0) = v2(0) and

either v
(1)
1 (0) > v

(1)
2 (0) > 0 or v

(1)
1 (0) < v

(1)
2 (0) 6 0, then H(v1) > H(v2).

Proof. We divide the proof into three steps as follows.
The first step states that there are at most two bounded solutions on the unstable manifold of

each equilibrium point.

Step 1. Suppose that v1, v2, v
(1)
1 , v

(1)
2 are non-constant functions, and that there exists ℓ0 ∈

A(v1) ∩ A(v2) such that

lim
t→±∞

v1(t) = lim
t→±∞

v2(t) = ℓ0 and lim
t→±∞

v
(1)
1 (t) = lim

t→±∞
v
(1)
2 (t) = 0.

Then, it follows that v1(t) decreases to ℓ0 and v2(t) increases to ℓ0 as t → ±∞, or vice versa. In

addition, v
(1)
1 (t) increases to 0 and v

(1)
2 (t) decreases to 0 as t→ ±∞, or vice versa.

Initially, by Corollary 4.5, v1, v2 and v
(1)
1 , v

(1)
2 can only tend monotonically to their respective

limits. Also, using symmetry, we may suppose by contradiction that v1 and v2 both decrease

towards ℓ0 as t → −∞ and v
(1)
1 and v

(1)
2 both increase towards 0 as t → −∞. In other words,

there exists T ≫ 1 such that v1(t) > 0, v2(t) > 0, v
(1)
1 (t) < 0, and v

(1)
2 (t) < 0 for t ∈ (−∞, T ).



24 J.H. ANDRADE AND J. WEI

We finish the contradiction argument with the following claim:
Claim 1. v1 ≡ v2.
Indeed, for s ∈ (ℓ0, ℓ0 + ε0), where 0 < ε0 ≪ 1 is small enough, let ζ1 and ζ2 correspond to
v1 and v2 respectively by the change of variables defined in (4.35). Notice that one must have

ζ
(1)
1 6= ζ

(1)
2 and ζ

(2)
1 6= ζ

(2)
2 on (ℓ0, ℓ0 + ε0) . Otherwise, by Lemma 4.4, we would get v1 ≡ v2.

Without loss of generality, we may assume ζ
(1)
1 > ζ

(1)
2 and ζ

(2)
1 > ζ

(2)
2 on (ℓ0, ℓ0 + ε0). Since both

ζ1, ζ
(1)
1 and ζ2, ζ

(1)
2 are differentiable on (ℓ0, ℓ0 + ε0) and, by Lemma 4.10, ζ1(ℓ0) = ζ2(ℓ0) = 0 and

ζ
(1)
1 (ℓ0) = ζ

(1)
2 (ℓ0) = 0. Therefore, there exists s0 ∈ (ℓ0, ℓ0 + ε0) such that ζ

(1)
1 (s0) > ζ

(1)
2 (s0) and

ζ
(2)
1 (s0) > ζ

(2)
2 (s0).

We divide the analysis into two cases:

Case 1. Both ζ
(1)
2 (s0) > 0 and ζ

(2)
2 (s0) > 0.

There exist t1, t2 ∈ R such that

v1(t1) = v2(t2) = s0, v
(1)
1 (t1) > v

(1)
2 (t2) > 0, v

(2)
1 (t1) > v

(2)
2 (t2), and v

(3)
1 (t1) > v

(3)
2 (t2).

By translating, v1 and v2 by t1 and t2 respectively, we find

v1(0) =v2(0), v
(1)
1 (0) > v

(1)
2 (0) > 0, v

(2)
1 (0) > v

(2)
2 (0), and v

(3)
1 (0) > v

(3)
2 (0). (4.36)

Since both v1 and v2 tend to ℓ0 monotonically as t → −∞, we conclude from Lemma 4.10 that

A−(v1) = A−(v2) = ℓ0 and A−(v
(j)
1 ) = A−(v

(j)
2 ) = 0 for j = 1, 2, 3, 4, 5. Therefore, H(v1) = H(v2).

In the light of (4.26), it is straightforward to check that (4.36) instead of (4.29) is sufficient for the
proof in Lemma 4.14 to go on unchanged. Hence v1 ≡ v2. This finishes the proof of the first case.

Case 2. Either ζ
(1)
2 (s0) < 0 or ζ

(2)
2 (s0) < 0.

Without loss of generality, we assume ζ
(1)
2 (s0) < 0; the same idea applies in the other situation.

Notice that ζ
(1)
2 > 0 on (ℓ0, s0] and ζ

(1)
2 (ℓ0) = 0. Then, there exists a s̄0 ∈ (ℓ0, s0) such that

ζ
(1)
2 (s̄0) = 0. If ζ

(1)
1 (s̄0) > 0, then ζ

(1)
1 (s̄0) > ζ

(1)
2 (s̄0) = 0, which is covered by the last case.

If ζ
(1)
1 (s̄0) < 0, then ζ

(1)
1 (s̄0) < ζ

(1)
2 (s̄0) and ζ

(1)
1 (s0) > ζ

(1)
2 (s0), and by continuity there exists

s̃0 ∈ (s̄0, s0] such that ζ
(1)
1 (s̃0) = ζ

(1)
2 (s̃0). Hence, one can find t1, t2 ∈ R such that

v1(t1) = v2(t2) = s̃0, v
(1)
1 (t1) > v

(1)
2 (t2) > 0, v

(2)
1 (t1) = v

(2)
2 (t2), and v

(3)
1 (t1) > v

(3)
2 (t2).

Since H(v1) = H(v2) as above, we may apply Lemma 4.14 to obtain v1 ≡ v2, which finishes the
proof of the second case.

The proof of Step 1 is concluded.
The next step states that whenever the energy inequality is violated one can find points on

which the second and the third derivatives of these two bounded solutions coincide.
Step 2. Suppose that v1(0) = v2(0) and v

(1)
1 (0) > v

(1)
2 (0) > 0, and H(v1) 6 H(v2). Then, there

exist t1, t2 ∈ R such that

v1(t1) =v2(t2), v
(1)
1 (t1) > v

(1)
2 (t2) > 0, v

(2)
1 (t1) = v

(2)
2 (t2), and v

(3)
1 (t1) = v

(3)
2 (t2). (4.37)

Let [t̂1, t̂2] be the largest interval containing t = 0 on which v
(1)
1 , v

(2)
1 , v

(3)
1 are positive, and let

[t1, t2] be the largest interval containing t = 0 on which v
(1)
2 , v

(2)
2 , v

(3)
2 are positive. We can now

apply the change variables (4.35) again. Let ζ1 correspond to v1 on [ŝ1, ŝ2] = [v1(t̂1), v1(t̂2)], and
let ζ2 correspond to v2 on [s1, s2] = [v2(t1), v2(t2)]. Clearly, as a consequence of Lemma 4.4, we
have ζ1 > ζ2 on (s1, s2). Finally, if −∞ < t1, then it follows from Lemma 4.10 that ŝ1 < s1,
whereas if t1 = −∞, then this follows from Step 1. The same happens to ŝ2 > s2.
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We fix the notation ζ = (ζ(1), ζ(2)) and |ζ|2 = ζ(1)
2
+ζ(2)

2
. We will prove that the norm function

has opposite sign on the edges of [s1, s2].
Claim 2. |ζ1(s1)|2 < |ζ2(s1)|2.
One can see that ζ2(s1) = v

(1)
2 (t1) = 0, ζ

(1)
2 (s1) = 2v

(2)
2 (t1) = 0 and ζ

(2)
2 (s1) = 2v

(3)
2 (t1) > 0.

Indeed, if t1 = −∞, this follows from Lemma 4.10, whereas if −∞ < t1, then it holds because
v(t1) and v

(1)(t1) are minimums. Notice that v1(t̂1) = ŝ1 < s1 and v1(t̂2) = ŝ2 > s2 > s1, thus let
t∗ ∈ (t̂1, t̂2) be such that v1(t∗) = v2(t1) = s1. By (2.11) and Lemma 4.11, we obtain

|ζ2(s1)|2 − |ζ1(s1)|2
8

=

(
1

2
v
(2)
2 (t1)

2 − 1

2
v
(2)
1 (t∗)

2

)
+

(
1

2
v
(3)
2 (t1)

2 − 1

2
v
(3)
1 (t∗)

2

)

> [H(v2)−G(s1)]− [H(v1)−G(s1)−R(v1(t∗))]

= [H(v2)−H(v1)] +R(v1(t∗)).

Next, using that v
(2)
1 (t∗) =

√
ζ
(1)
1 (s1) >

√
ζ
(1)
2 (s1) = 0, combined with Corollary 4.13, we conclude

R(v1(t∗)) > 0. Hence, since H(v2)−H(v1) > 0, the desired conclusion holds.
Claim 3. |ζ1(s2)|2 > |ζ2(s2)|2.
Indeed, one can see that ζ2(s2) = 0 and ζ

(1)
2 (s2) = 2v

(2)
2 (t1) 6 0. Indeed, if t2 = ∞, this follows

from Lemma 4.10, whereas if t2 < +∞, then it holds because v(t2) is a maximum. Notice that
v2(t1) = s1 > ŝ1 and v2(t2) = s2 < ŝ2 < ŝ1, thus let t

∗ ∈ (t1, t2) be such that v2(t
∗) = v1(t̂2) = ŝ2.

By (2.11) and Lemma 4.11, we obtain

|ζ2(s2)|2 − |ζ1(s2)|2
8

= [H(v2)−H(v1)] +R(v1(t2)).

As before, we conclude the proof of this claim.

By continuity, we find s∗ ∈ (s1, s2) such that |ζ1(s∗)| = |ζ2(s∗)|, which implies ζ
(1)
1 (s∗) = ζ

(1)
2 (s∗)

and ζ
(2)
1 (s∗) = ζ

(2)
2 (s∗). The proof is finished by undoing the transformation (4.35)

Finally, we are based on the last step to conclude the proof of the energy ordering.
Step 3. H(v1) > H(v2).

By symmetry, we may assume v
(1)
1 (0) > v

(1)
2 (0) > 0. Suppose by contradiction that H(v1) 6

H(v2), then, by Step 2, there exist t1, t2 ∈ R such that (4.37) holds. Thus, by translation invariance,
we may take t1 = t2 = 0, which gives us that (4.29) are satisfied. Therefore, using Lemma 4.14 we
obtain that v1 ≡ v2, which contradicts our assumptions, and so Step 3 is proved.

The proof of the lemma is finished. �

4.5. Uniqueness. We prove uniqueness, up to translations, of homoclinic solutions to (O6).

Lemma 4.16. Let v1, v2 ∈ C6(R) be bounded positive solutions to (O6). Suppose that

lim|t|→∞ v1(t) = lim|t|→∞ v2(t) = 0 and v
(1)
1 (0) = v

(1)
2 (0) = 0. Then, it follows v1 ≡ v2.

Proof. We divide the proof into claims

Claim 1. t0 = 0 is the only zero of v
(1)
1 and v

(1)
2 .

Indeed, if v
(1)
1 had another zero at, say, t1 > 0, then by repeatedly applying Corollary 4.5, we get

that v must be periodic of period 2t1 > 0. In particular 0 < v(0) = v(2kt1) for all k ∈ N, which

contradicts the fact v(t) → 0 as t→ +∞. The argument for v
(1)
2 is analogous. Hence, we get

v
(1)
1 (t) < 0 and v

(1)
2 (t) < 0 for all t > 0; (4.38)

this proves the first claim.
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Next, by Lemma 4.10 and Proposition 2.10, we find

Hv1 = lim
t→+∞

Hv1(t) = G(0) = 0 and Hv2 = lim
t→+∞

Hv2(t) = G(0) = 0. (4.39)

From which, we see that if v1(0) = v2(0), then, by Lemma 4.4, the proof is concluded.
Claim 2. v1(0) = v2(0).
As a matter of fact, let us suppose by contradiction that v1(0) > v2(0). We claim that this implies
v1 > v2 everywhere. Indeed, otherwise there would exist t1 > 0 such that v1 > v2 on [0, t1) and

v1(t1) = v2(t1). Then, by (4.38), we infer that v
(1)
1 (t1) 6 v

(1)
2 (t1) < 0. If v

(1)
1 (t1) = v

(1)
2 (t0),

then Lemma 4.4 implies v1 ≡ v2, contradicting v1(0) > v2(0). If v
(1)
1 (t1) < v

(1)
2 (t1) < 0, then, by

Lemma 4.15, we obtain Hv1 > Hv2 , which contradicts (4.39).
For any R > 0, since v1, v2 ∈ C6(R) satisfy (O6), using integration by parts, we get

0 =

∫ T

−T
v2

(
v
(6)
1 −K4v

(4)
1 +K2v

(2)
1 + g(v1)

)

= B(T ) +

∫ T

−T
v1

(
v
(6)
2 −K4v

(4)
2 +K2v

(2)
2 + g(v2)

)
+

∫ T

−T
v2v1 (g(v2)− g(v1))

= B(T ) +

∫ T

−T
v2v1 (g(v2)− g(v1)) ,

where the term B(T ) denotes all the boundary terms coming from the integrations by parts. By

Lemma 4.10, we have B(T ) → 0 as R→ +∞. However, since
∫ T
−T v2v1(f(v2)−f(v1)) is a negative

and strictly decreasing function of T , we obtain a contradiction by choosing T ≫ 1 large enough.
The lemma is proved. �

A direct consequence of this uniqueness result is that for the concrete values of K0,K2,K4 given
by (2.2) and p = 2n

n−6 , one can compute the homoclinic solution explicitly. This is precisely the
only place in the proof where the closed form of these parameters enters.

Corollary 4.17. Let v ∈ C6(R) be a bounded solution to (O6). If lim|t|→∞ v(t) = 0, then there
exists T ∈ R such that

v(t) = cn(2 cosh(t− T ))−γn .

Proof. A straightforward calculation shows that v0(t) = cn(2 cosh(t))
−γn solves (O6). Using the

conditions on v, we have that v has a global maximum at some T ∈ R. Since v(1)(T ) = 0, we can
apply Lemma 4.16 to conclude that v(· + T ) = v0, and this finishes the proof. �

4.6. Classification. In what follows, we state the most important auxiliary result in the proof of
our main proposition.

Lemma 4.18. Let v ∈ C6(R) be a solution to (O6). One of the following three alternatives holds:

(a) v ≡ ±a∗n or v ≡ 0;
(b) v(t) = ±cn(2 cosh(t− T ))−γn for some T ∈ R;
(c) v is periodic, has a unique local maximum and minimum per period, and is symmetric with

respect to its local extrema.

Proof. Let v ∈ C6(R) be a solution to (O6) and let #Z(1)(v) be its critical set as defined previously
in (4.2). We now distinguish several cases with respect to the cardinality of the critical set.

Case 1. #Z(1)(v) = 0.
In this case, v is strictly monotone. In fact, up to replacing v(t) by v(−t), we may assume that v
is strictly increasing, and so, by Lemma 4.8, it follows ℓ± = limt→±∞ v(t) ∈ R. By Lemma 4.10,
we are reduced to studying three situations as follows.
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If ℓ− = 0 and ℓ+ = a∗n, then using Lemma 4.10, we get limt→−∞Hv(t) = G(0) = 0, whereas
limt→+∞Hv(t) = G(a∗n) < 0, a contradiction to energy conservation. In the same way, a
contradiction is obtained if ℓ− = −a∗n and ℓ+ = 0.

It remains to consider the case ℓ− = −a∗n and ℓ+ = a∗n. As before, we can apply Lemma 4.10

lim
|t|→∞

Hv(t) = G(a∗n) < 0. (4.40)

On the other hand, by Corollary 4.13, we have that the following sign identity holds

Hv(t) >
1

2
v(3)(t)2 +R(v(t)) +G(v(t)). (4.41)

However, by evaluating the energy at some t = t0 such that v(t0) = 0 and using (4.41), we obtain

Hv(t0) >
1
2v

(3)(t0)
2+R(0)+G(0) > 0, which contradicts (4.40) and the energy conservation. The

conclusion is that Z(1)(v) = ∅ cannot occur.

Case 2. #Z(1)(v) = 1.

Up to a translation, we may assume Z(1)(v) = {0}. Thus, v is strictly monotone on (−∞, 0) and
(0,∞), which yields that ℓ± = limt→±∞ v(t) ∈ R ∪ {±∞}. By Lemma 4.8, we have ℓ± ∈ R, and
so v is bounded, and, by Corollary 4.5, also even. Then, we find ℓ+ = ℓ−. By Lemma 4.10, only
three cases can occur: ℓ+ = ℓ− = 0 or ℓ+ = ℓ− = ±a∗n. In this case, monotonicity implies that
either v > 0 or v < 0, and we conclude v(t) = ±cn(2 cosh(t))−γn by Corollary 4.17.

For the remaining cases, by otherwise replacing v(t) by −v(t), let us assume without loss of
generality that ℓ+ = ℓ− = a∗. Using that v is strictly monotone on [0,∞), v(0) 6= a∗n, and

Hv(0) >
1
2v

(3)(0)2 + G(0) > 0, one can see that since F attains its global minimal value only at
v = ±a∗n it holds v(0) = −a∗n. Hence v changes sign; i.e., there exists t0 ∈ R such that v (t0) = 0.
By Corollary 4.5, we get that v is anti-symmetric with respect to t0, which is a contradiction with
ℓ± > 0. Therefore, we obtained that if #Z(1)(v) = 1, then v(t) = ±cn(2 cosh(t))−γn .

Case 3. #Z(1)(v) > 2.

By continuity of v(1), we find that unless v is constant (and hence v ≡ ±a∗n or v ≡ 0), the closed set
Z(1)(v) cannot be dense; that is, there exist real numbers t1 < t2 such that v(1)(t1) = v(1)(t2) = 0

and v(1) 6= 0 on (t1, t2). Then, by Lemma 4.3, we get that v is bounded and therefore, we can use
Corollary 4.5 as in the proof of Lemma 4.16 to find that v must be periodic of period 2(t2− t1). In
addition, since v is strictly monotone on (t1, t2), there is (strictly) only one maximum and minimum
per period interval. The symmetry with respect to the extrema follows from Corollary 4.5. �

4.7. Shooting technique. Finally, we are ready to prove the main result in this section.

Proof of Proposition 4.1. The proof will be divided into three steps as follows:
Step 1. Proof of (i).

By Lemma 4.18, the only possible case on which the estimate (4.1) may fail to is when v is
periodic. In this case, v possesses a local minimum at, say, t0 ∈ R. Note that if v has a zero then
(4.1) is automatically fulfilled, so we may assume that v has a fixed sign and, up to replacing v by
−v, we may assume that v > 0. However, using Lemma 4.9, either v is constant, and so v ≡ a∗n,
or v(t0) < a∗n, which yields that (4.1) holds with strict inequality, which in turn proves (i).
Step 2. Proof of (ii).

The value a0 ∈ (0, a∗n) will be considered to be fixed throughout the following argument. For
any vector b = (b1, b2) ∈ R

2
+ := {b : bj > 0 for j = 1, 2}, where bj = a2j for j = 1, 2, let us denote

by vb ∈ C6(R) the unique solution to (O6) with the initial values

v(0) = a0, v(2)(0) = b1, v(4)(0) = b2, and v(1)(0) = v(3)(0) = v(5)(0) = 0, (4.42)

and by Tb ∈ (0,∞] its maximal forward time of existence.
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We now proceed to our shooting technique. Since G(v) → +∞ as v → +∞, for any C(a0) > 0,
which will be chosen later, there exists R(a0) > 0 such that G(v) > C(a0) for all v > R(a0). In
this fashion, let us define the shooting decomposition sets

S1 :=
{
b ∈ R

2
+ : vb(t) < 0 for some t ∈ (0, Tb)

}
,

and

S2 :=
{
b ∈ R

2
+ : vb(t) > R(a0) for some t ∈ (0, Tb) and vb > 0 in [0, t]

}
.

Clearly, S1, S2 ⊂ R
m−1
+ are open because of the standard continuous dependence of solutions on

the initial conditions. Thus, we are left to show that they are both non-empty and disjoint. This
is the content of the following claims.
Claim 1: (b∗,+∞)2 ⊂ S2 6= ∅, where b∗ = max{β1, β2} are the greatest solutions to the algebraic

equation −K4β
4 +K2β

2 − K̂0 = 0 in R.
In fact, suppose that bj > b∗ for any j = 1, 2. Hence, writing (O6) as

v
(6)
b

= K4v
(4)
b

−K2v
(2)
b

− g(vb) in R (4.43)

and combining with (4.42), we find that v
(6)
b

increases initially. Thus, v
(2)
b

(0) and v
(4)
b

(0) increase
initially, and since the right-hand side of (4.43) is positive initially, it is easy to check that they

stay positive on [0, Tb). Whence, v
(6)
b

> 0 in [0, Tb), which implies that v
(j)
b

for j = 0, . . . , 5 all
keep increasing on [0, Tb). Consequently, if Tb = +∞ then vb is unbounded. On the other hand,

since g is locally Lipschitz, if Tb < +∞, then vb(t) → +∞ as t → Tb . To summarize, v
(1)
b

> 0 in
[0, Tb) and limt→Tb

vb(t) = +∞ when bj > b∗ for any j = 1, 2. Based on this, we can restrict our
search to the so-called shooting parameter set b ∈ [0, b∗]2 =: S.
Claim 2: (S1 ∩ S2) ∩ S = ∅.
In fact, notice that for all b ∈ S, we have the uniform energy bound

H(vb)(0) 6 b2b1 − b21 +G(a0) 6 (b2 − b1)b1 +G(a0) := C(a0). (4.44)

This implies that whenever b ∈ [0, b∗]2 and vb(t0) > R(a0), we must have v
(1)
b

(t0) 6= 0, otherwise,
by using Corollary 4.13, the following identity holds

H(vb(t0)) =
1

2
v
(3)
b

(t0)
2
+R(vb(t0)) +G(vb(t0)) > C(a0),

where R(vb(t0)) = E2(vb(t0))vb(2)(t0) > 0 is given by (4.27). The last inequality contradicts
(4.44) and the conservation of energy in Proposition 2.10. In particular, if vb enters the interval
(R(a0),+∞), then vb cannot leave it again, and hence is certainly not a periodic solution.
Claim 3: 0 ∈ S1 6= ∅.

On the other hand, if b = 0, we see from (4.43) that v
(6)
0

(0) = g(a0) < 0, and hence v0, v
(2)
0

, and

v
(4)
0

are strictly decreasing on some small interval t ∈ (0, τ) for some τ > 0. Since g(v) < 0 for

v ∈ (0, a0), we deduce from (4.43) that v
(j)
0

for j = 1, . . . , 5 stay strictly negative until v0 reaches
a negative value. Therefore, if b = 0, there must be t0 such that v0(t0) < 0.

Since our shooting parameter interval R2
+ is connected, we deduce that S1 ∪ S2 6= R

2
+. Hence

there exists b∗ ∈ R
2
+ \ {0} and a corresponding solution v∗ := vb∗ such that 0 6 v∗ 6 R(a0),

which means that v∗ is bounded. Combining this with the fact that g is locally Lipschitz, we get
that Tb∗ = ∞. By even reflection, we find a solution defined on R, which we still refer to as v∗.
Since b∗ ∈ R

2
+ \ {0}, we know v∗ has a strict local minimum at the origin. Therefore, using the

classification from Lemma 4.18, v∗ must be periodic. Moreover, it has a unique local maximum
and minimum per period and is symmetric with respect to its extrema. The uniqueness of v∗ up
to translations follows from Lemma 4.15.
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Step 3. Proof of (iii).

Using that λ1 = γn, we need to prove that w := v(1)/v satisfies w(t) < λ1 for all t > 0. Using

Lemma 4.18, one can find t0 ∈ R such that v(1)(t0) = 0, and so w(t0) = 0. Then, we reduced to
prove the following claim
Claim 4. M := {t > t0 : w(t) > λ1} = ∅.
Indeed, notice that w ∈ C5(R) satisfies

w(1) = −w2 + λ1 +
Φ1

v
, (4.45)

where Φ1 = ∂
(2)
t v − λ1v. Now, suppose by contradiction that M 6= ∅ and let t1 := infM . It is

easy to see that t1 > t0, which yields w(1)(t1) > 0. On the other hand, since w(t1) = λ1, (4.45)
implies

w(1)(t1) =
Φ1(t1)

v(t1)
,

which combined with v(t1) > 0 yields

Φ1(t1) > 0. (4.46)

Next, using the notation in the proof of Lemma 4.4, we can rewrite (O6) as

−Lλ1λ2(Φ2) := −Φ
(2)
2 + λ1λ2Φ2 = −f(v) in R,

where Φ1,Φ2,Φ3 are defined in (4.3). According to Lemma 4.18, v attains its maximum in R.
Since v > 0, the maximum principle implies that Φ2 < 0 in R. Thus, since

−Lλ1(Φ1) := −Φ
(2)
1 + λ1Φ1 = Φ2 in R,

the maximum principle again implies that Φ1 < 0 in R. This is a contradiction with (4.46), which
finishes the proof. �

5. Proof of the main theorem

In this section, we are based on Proposition 3.1 and Proposition 4.1 to prove Theorem 1.

Proof of Theorem 1. First, using Proposition 3.1, it follows that u is radially symmetric. Notice
that v(t) = eγntu(et) satisfies (O6), we are in position to apply the classification result from
Proposition 4.1. Hence either v ≡ a∗n is constant or v is periodic. Indeed, the only case that
remains to be excluded is that v(t) = cn(2 cosh(t− T ))γn for some T ∈ R. However, if this holds,
we would have that v(t) ∼ cne

γnt as t → −∞ and hence the singularity of u would be removable,
which is a contradiction since 0 is a non-removable singularity. Thus, either v is constant or
periodic.

Second, fixing a0 := inf v and using Proposition 4.1 (i), it follows that a0 ∈ (0, a∗n], and a0 = a∗n
if and only if v ≡ a∗n. Moreover, when a0 ∈ (0, a∗n), the function v is periodic with minimal value
a0. Therefore, by the Proposition 4.1 (ii), we get that v(t) = va(t+ T ) for some T ∈ R.

Finally, a simple computation shows in Emden–Fowler coordinates that ∂
(1)
r u < 0 in (0,+∞) is

equivalent to v(1) < γnv in R, which is true because of Proposition 4.1 (iii). This concludes the
proof of our main theorem. �
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