THE DONALDSON-THOMAS PARTITION FUNCTION OF THE BANANA MANIFOLD

JIM BRYAN, APPENDIX WITH STEPHEN PIETROMONACO

ABSTRACT. A banana manifold is a compact Calabi-Yau threefold, fibered by Abelian surfaces, whose singular fibers have a singular locus given by a “banana configuration of curves”. A basic example is given by

\[X_{\text{ban}} := \text{Bl}_\Delta(S \times \mathbb{P}^1 S) \]

the blowup along the diagonal of the fibered product of a generic rational elliptic surface \(S \to \mathbb{P}^1 \) with itself.

In this paper we give a closed formula for the Donaldson-Thomas partition function of the banana manifold \(X_{\text{ban}} \) restricted to the 3-dimensional lattice \(\Gamma \) of curve classes supported in the fibers of \(X_{\text{ban}} \to \mathbb{P}^1 \). It is given by

\[
Z_\Gamma(X_{\text{ban}}) = \prod_{d_1, d_2, d_3 \geq 0} \prod_k \left(1 - p^k Q_1^{d_1} Q_2^{d_2} Q_3^{d_3} \right)^{-12c(||d||, k)}
\]

where \(||d|| = 2d_1 d_2 + 2d_2 d_3 + 2d_3 d_1 - d_1^2 - d_2^2 - d_3^2 \), and the coefficients \(c(\alpha, k) \) have a generating function given by an explicit ratio of theta functions.

This formula has interesting properties and is closely related to the equivariant elliptic genera of \(\text{Hilb}(\mathbb{C}^2) \). In an appendix with S. Pietromonaco, it is shown that the corresponding genus \(g \) Gromov-Witten potential \(F_g \) is a genus 2 Siegel modular form of weight \(2g - 2 \) for \(g \geq 2 \), namely it is the Skoruppa-Maass lift of a multiple of an Eisenstein series, specifically \(\frac{6|B_{2g}|}{g(2g-2)!} E_{2g}(\tau) \).

1. INTRODUCTION

1.1. Donaldson-Thomas invariants. The Donaldson-Thomas invariants of a Calabi-Yau threefold \(X \) encode subtle information about the enumerative geometry of \(X \). They are a mathematical incarnation of counts of BPS states in B-model topological string theory compactified on \(X \).

\begin{flushright}
Date: March 8, 2019.
This material is based upon work supported by the National Science Foundation under Grant No. 1440140, while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring semester 2018. The author was also supported by NSERC.
\end{flushright}
Let X be a Calabi-Yau threefold, that is a smooth complex threefold with trivial canonical class. Let $\beta \in H_2(X, \mathbb{Z})$ be a curve class, let $n \in \mathbb{Z}$, and let
\[
\text{Hilb}^{\beta,n}(X) = \{ Z \subset X : \ [Z] = \beta, \ \chi(O_Z) = n \}
\]
be the Hilbert scheme parameterizing dimension one subschemes in the class β and having holomorphic Euler characteristic n. The Donaldson-Thomas invariant $DT_{\beta,n}(X)$ can be defined \[3\] as a weighted Euler characteristic of the Hilbert scheme:
\[
DT_{\beta,n}(X) = e \left(\text{Hilb}^{\beta,n}(X), \nu \right) := \sum_{k \in \mathbb{Z}} k \cdot e \left(\nu^{-1}(k) \right)
\]
where $e(\cdot)$ is topological Euler characteristic and
\[
\nu : \text{Hilb}^{\beta,n}(X) \rightarrow \mathbb{Z}
\]
is Behrend’s constructible function. One can regard $DT_{\beta,n}(X)$ as a virtual count of the number of curves in the class β with Euler characteristic n.

The Donaldson-Thomas partition function is a generating function for the invariants which we define\(^1\) as
\[
Z(X) = \sum_{\beta \in H_2(X, \mathbb{Z})} \sum_{n \in \mathbb{Z}} DT_{\beta,n}(X) Q^\beta (-p)^n.
\]
Here $Q^\beta = Q_1^{d_1} \cdots Q_r^{d_r}$ where $\beta = d_1 C_1 + \cdots + d_r C_r$ and $\{C_1, \ldots, C_r\}$ is a basis for $H_2(X, \mathbb{Z})$ chosen so that $d_i \geq 0$ for all effective curve classes. $Z(X)$ is then a formal power series in Q_1, \ldots, Q_r whose coefficients are formal Laurent series in p.

The Donaldson-Thomas partition function is very hard to compute:

\[
\text{Currently, there is not a single compact Calabi-Yau threefold } X, \text{ with trivial first Betti number, for which } Z(X) \text{ is completely known, not even conjecturally } ^2.
\]

\(^1\)Our insertion of a minus sign is somewhat non-standard.

\(^2\)In the case of positive first Betti number, the ordinary Donaldson-Thomas invariants are zero except for trivial cases. However, there is a modification of the usual invariants (the reduced Donaldson-Thomas invariants), which leads to an interesting theory. In the cases of Abelian threefolds, products of a $K3$ surface and an elliptic curve, and quotients of such a product by a cyclic group acting K-trivially on both factors, we do have complete conjectural answers for the partition functions of the modified invariants $[32, 13, 12]$. The case of a product of a $K3$ surface and an elliptic curve has now been proven $[33]$.\]
Given some sublattice $\Gamma \subset H_2(X, \mathbb{Z})$, we can define a restricted partition function:

$$Z_{\Gamma}(X) = \sum_{\beta \in \Gamma} \sum_{n \in \mathbb{Z}} DT_{\beta,n}(X) Q^\beta (-p)^n.$$

Even for restricted partition functions, there are very few results for compact X. For elliptic or $K3$ fibrations $\pi : X \to B$, the restricted partition functions $Z_{\Gamma}(X)$ have been computed for $\Gamma = \text{Ker}(\pi_* : H_2(X) \to H_2(B))$, i.e. fiber classes, by Toda [40, Thm 6.9] in the case of elliptic fibrations and Maulik, Pandharipande, and Thomas [30, 36] in the case of $K3$ fibrations. In the case of $K3$ fibrations, the partition functions exhibit modularity properties.

In this paper we compute $Z_{\Gamma}(X)$ where X is a certain kind of Calabi-Yau threefold (a banana manifold) and Γ is a rank 3 lattice. We give an explicit product formula for $Z_{\Gamma}(X)$, we derive a generating function for the corresponding Gopakumar-Vafa invariants, and we show (assuming the GW/DT correspondence) that the associated Gromov-Witten potentials are Siegel modular forms.

1.2. Banana manifolds and their partition functions. We study a class of compact Calabi-Yau threefolds which we call banana manifolds. The basic example, which we denote X_{ban}, is defined as follows\(^3\).

Definition 1. Let $S \to \mathbb{P}^1$ be a generic rational elliptic surface. Let

$$X_{\text{ban}} = \text{Bl}_\Delta (S \times_{\mathbb{P}^1} S)$$

be the fibered product of S with itself blown up along the diagonal Δ. See Figure 1.

The map $S \to \mathbb{P}^1$ is singular at 12 points which gives rise to 12 conifold singularities in the fibered product which all lie on the divisor Δ. Consequently, X_{ban} is a conifold resolution of $S \times_{\mathbb{P}^1} S$. X_{ban} is a simply connected, compact Calabi-Yau threefold with Hodge numbers $h^{1,1}(X_{\text{ban}}) = 20$ and $h^{1,2}(X_{\text{ban}}) = 8$ (see § 5).

The generic fiber of $\pi : X_{\text{ban}} \to \mathbb{P}^1$ is $E \times E$, the product of an elliptic curve with itself and π has 12 singular fibers which are non-normal toric surfaces, F_{sing}, each of which is a compactification of $\mathbb{C}^* \times \mathbb{C}^*$ by a banana configuration of \mathbb{P}^1's.

\(^3\)Essentially this construction of the banana manifold is mentioned briefly in [24, End of section 5.2]; we learned about this from Georg Oberdieck.
Definition 2. A banana configuration in a Calabi-Yau threefold X is a union $C = C_1 \cup C_2 \cup C_3$ of three curves $C_i \cong \mathbb{P}^1$ with $N_{C_i/X} \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$ and such that $C_1 \cap C_2 = C_2 \cap C_3 = C_3 \cap C_1 = \{p, q\}$ where $p, q \in X$ are distinct points. Moreover, there exist coordinates on formal neighborhoods of p and q such that the curves C_i are given by the coordinate axes in those coordinates. See figure 2; the meaning of the picture on the right is discussed in section 3.5.

The banana curves C_1, C_2, C_3 of any of the singular fibers generate

$$\Gamma = \text{Ker } \pi_* \subset H_2(X_{\text{ban}}, \mathbb{Z}),$$

The SYZ mirror of this configuration was studied by Abouzaid, Auroux, and Katzarkov in [1]. The banana configuration also appears in the Landau-Ginzburg mirror of a genus two curve as studied by Gross, Katzarkov, and Ruddat in [19] and Ruddat in [39].
the lattice of the fiber classes (Lemma 29). Let

\[\beta_d = d_1 C_1 + d_2 C_2 + d_3 C_3 \]

and define

\[||d|| = 2d_1^2 + 2d_2^2 + 2d_3^2 - d_1^2 - d_2^2 - d_3^2. \]

This quadratic form is twice the intersection form of a smooth fiber, by which we mean that if \(\beta_d \) is represented by a cycle \(C \) supported on a smooth fiber, then \(||d|| = 2C \cdot C \) where \(C \cdot C \) is the self-intersection of \(C \) in the smooth fiber.

We define banana manifolds in general as follows.

Definition 3. We say that a compact Calabi-Yau threefold \(X \) is a **banana manifold** with \(N \) banana fibers if there is an Abelian surface fibration \(\pi : X \to \mathbb{P}^1 \) where the singular locus of \(\pi \) consists of \(N \) disjoint banana configurations and the smooth locus of \(\pi \) is an Abelian group scheme over \(\mathbb{P}^1 \) whose natural action on itself extends to an action on \(X \) (see [14] for examples of rigid Banana manifolds).

Our main theorem is the following:

Theorem 4. Let \(X_{ban} \) be the basic banana manifold and let \(\Gamma = \text{Ker} \pi_* \cong \mathbb{Z}^3 \) where \(\pi : X_{ban} \to \mathbb{P}^1 \). Then the Donaldson-Thomas partition function of \(X_{ban} \), restricted to \(\Gamma \) is given by

\[
Z_\Gamma(X_{ban}) = \prod_{d_1, d_2, d_3 \geq 0} \prod_k \left(1 - Q_1^{d_1} Q_2^{d_2} Q_3^{d_3} \right)^{-12c(||d||, k)}
\]

where the second product is over all \(k \in \mathbb{Z} \) unless \((d_1, d_2, d_3) = (0, 0, 0)\) in which case \(k > 0 \), and where the \(c(||d||, k) \) are positive integers given by

\[
\sum_{a=-1}^{\infty} \sum_{k \in \mathbb{Z}} c(a, k) Q^a y^k = \frac{\sum_{k \in \mathbb{Z}} Q^{2k} (-y)^k}{\left(\sum_{k \in \mathbb{Z} + \frac{1}{2}} Q^{2k} (-y)^k \right)^2} = \frac{\vartheta_4(2\tau, z)}{\vartheta_1(4\tau, z)^2}
\]

where \(\vartheta_4 \) and \(\vartheta_1 \) are the usual theta functions\(^5\) with \(Q = e^{2\pi i \tau} \) and \(y = e^{2\pi iz} \).

Remark 5. While we have formulated the Theorem for the basic banana manifold, our proof will work for banana manifolds in general, where the 12 in the exponent on the right hand side will be replaced by \(N \), the number of banana configurations.

\(^5\)Following the conventions from Wolfram Alpha’s Jacobi Theta Function page.
Remark 6. The coefficients \(c(a, k)\) are also the coefficients of the equivariant elliptic genus of the plane \(\mathbb{C}^2\), see §2. We also note that the right hand side of the above equation, is a meromorphic Jacobi form of weight \(-\frac{1}{2}\) and index -1 for the group \(\Gamma(4)\).

Corollary 7 (Pietromonaco). Assuming the Gromov-Witten/Donaldson-Thomas correspondence holds for a banana manifold \(X\), the genus \(g\) Gromov-Witten potential function \(F_g(Q_1, Q_2, Q_3)\) is a meromorphic Siegel modular form of weight \(2g - 2\) for all \(g \geq 2\) where \(Q_1 = e^{2\pi i z}\), \(Q_2 = e^{2\pi i (\tau - z)}\), \(Q_3 = e^{2\pi i (\sigma - z)}\), and \((\tau : z) \in \mathbb{H}_2\) is in the genus 2 Siegel upper half plane. Namely, \(F_g\) is given by the Skoruppa-Maass lift of \(a_g E_{2g}(\tau)\), the \(2g\)-th Eisenstein series multiplied by the constant \(a_g = \frac{6|B_{2g}|}{g(2g - 2)!}\). See Appendix A for full definitions of the terms.

This corollary has a natural interpretation in terms of mirror symmetry, see Remark 35.

Our Theorem 4 also completely determines the Gopakumar-Vafa invariants of the banana manifold. One corollary is:

Corollary 8. The Gopakumar-Vafa invariants of \(X_{\text{ban}}\) in the class \(\beta_d\) only depend on \(||d||\). We thus streamline the notation by writing

\[
n^g_{\beta_d}(X_{\text{ban}}) = n^g_a(X_{\text{ban}}) \text{ where } a = ||d||.
\]

The property that \(n^g_{\beta_d}(X_{\text{ban}})\) only depends on \(||d||\) and so in particular the invariants are independent of the divisibility of \(\beta_d\), is an unusual property of \(X_{\text{ban}}\) which is also shared by the local \(K3\) surface by a deep result of Pandharipande-Thomas [36].

We can reformulate our main result in terms of the Gopakumar-Vafa invariants. After some manipulation of generating functions (see §2 and §6) we can deduce:

Theorem 9. The Gopakumar-Vafa invariants \(n^g_{\beta_d}(X_{\text{ban}}) = n^g_a(X_{\text{ban}})\) in the classes \(\beta_d\) with \(||d|| = a\) are given by

\[
\sum_{a=-1}^{\infty} \sum_{g \geq 0} n^g_a(X_{\text{ban}}) \left(y^{\frac{1}{2}} + y^{-\frac{1}{2}}\right)^{2g} Q^{a+1} = 12 \prod_{n=1}^{\infty} \frac{(1 + yQ^{2n-1})(1 + y^{-1}Q^{2n-1})(1 - Q^{2n})}{(1 + yQ^{4n})^2(1 + y^{-1}Q^{4n})^2(1 - Q^{4n})^2}.
\]

It is interesting to compare the above formula to the analogous result for the local \(K3\) surface, namely the Katz-Klemm-Vafa formula:
Theorem 10 (Pandharipande-Thomas[36]). *The Gopakumar-Vafa invariants* $n^a_\beta(K3) = n^2_\beta(K3)$ *in the class* β *with* $\beta^2/2 = a$ *are given by*

$$
\sum_{a=-1}^{\infty} \sum_{g\geq 0} n^a_\beta(K3) \left(y^{1/2} + y^{-1/2} \right)^{2g} Q^{a+1} = \prod_{n=1}^{\infty} \frac{1}{(1 + yQ^n)^2(1 + y^{-1}Q^n)^2(1 - Q^n)^20}.
$$

Note that the right hand side of the above equation, after the substitution $Q = -yg$, is equal to $\sum_n \chi_y(\text{Hilb}^n(K3))q^n$, the generating function for the χ_y-genus of the Hilbert schemes of points on $K3$. It would be interesting to find an analogous interpretation of the right hand side of the equation in Theorem 9.

See § A for a table of $n^a_\beta(X_{ban})$ for small values of a and g.

2. The coefficients $c(a, k)$ and the elliptic genera of $\text{Hilb}(\mathbb{C}^2)$.

Let M be a compact complex manifold of dimension d and let x_1, \ldots, x_d be the Chern roots of TM. Then the elliptic genus is defined by

$$
\text{Ell}_{q,y}(M) = \int_M \prod_{j=1}^d x_j y^{-\frac{1}{2}} \prod_{n=1}^{\infty} \frac{(1 - ye^{-x_j}q^{n-1}) (1 - y^{-1}e^{x_j}q^n)}{(1 - e^{-x_j}q^{n-1}) (1 - e^{x_j}q^n)}.
$$

If M has a \mathbb{C}^* action with isolated fixed points, then by Atiyah-Bott localization we get

$$
(1) \quad \text{Ell}_{q,y}(M) = \sum_{p \in M^{\mathbb{C}^*}} \prod_{j=1}^d y^{-\frac{1}{2}} \prod_{n=1}^{\infty} \frac{(1 - yt^{-k_j(p)}q^{n-1}) (1 - y^{-1}t^{k_j(p)}q^n)}{(1 - t^{-k_j(p)}q^{n-1}) (1 - t^{k_j(p)}q^n)}
$$

where $k_1(p), \ldots, k_d(p) \in \mathbb{Z}$ are the weights of the \mathbb{C}^* action on $T_p M$.

If M is non-compact, we take equation (1) to be the definition of the elliptic genus $\text{Ell}_{q,y}(M, t)$ which then may depend on t, the equivariant parameter6.

It is convenient to rewrite this expression in terms of the Fourier expansion of the theta function θ_1. Let $q = \exp(2\pi i \tau)$ and $y = \exp(2\pi iz)$, then $\theta_1(q, y)$ is given by

$$
\theta_1(q, y) = - \sum_{k \in \mathbb{Z} + \frac{1}{2}} q^{\frac{k^2}{2}}(-y)^k
$$

$$
= - i q^{\frac{1}{2}} y^{-\frac{1}{2}} \prod_{n=1}^{\infty} (1 - q^n)(1 - yq^{n-1})(1 - y^{-1}q^n).
$$

6The parameter $t \in H^*_c(pt)$ is the Chern character of the universal line bundle so $t = e^{c_1}$ where $c_1 \in H^2_c(pt)$ is an integral generator.
Then equation (1) becomes

$$\text{Ell}_{q,y}(M, t) = \sum_{p \in M} \prod_{j=1}^{d} \frac{\theta_1(q, yt^{-k_j(p)})}{\theta_1(q, t^{-k_j(p)})}$$

For example, if we let \mathbb{C}^* act on $\text{Hilb}^m(\mathbb{C}^2)$ with weights ± 1, then the induced action of \mathbb{C}^* on $\text{Hilb}^m(\mathbb{C}^2)$ has isolated fixed points corresponding to monomial ideals which are in bijective correspondence with integer partitions of m. The tangent weights associated to a partition R are given by $\{\pm h_{j,k}\}$ where $h_{j,k} = h_{j,k}(R)$ is the hook length of the box in position (j, k) in the diagram of R (see §4.2 for this notation). Thus

$$\sum_{m=0}^{\infty} \text{Ell}_{q,y}(\text{Hilb}^m(\mathbb{C}^2), t) Q^m = \sum_{R} Q^{|R|} \prod_{(j,k) \in R} \frac{\theta_1(q, yt^{-h_{j,k}})\theta_1(q, yt^{h_{j,k}})}{\theta_1(q, t^{-h_{j,k}})\theta_1(q, t^{h_{j,k}})}.$$

Dijkgraaf-Moore-Verlinde-Verlinde conjectured [16] that

$$\sum_{m=0}^{\infty} \text{Ell}_{q,y}(\text{Hilb}^m(\mathbb{C}^2), t) Q^m = \sum_{m=0}^{\infty} \text{Ell}_{q,y}^{orb}(\text{Sym}^m(\mathbb{C}^2), t) Q^m$$

where $\text{Ell}_{q,y}^{orb}(\text{Sym}^m(\mathbb{C}^2), t)$ is the orbifold elliptic genera of $\text{Sym}^m(\mathbb{C}^2)$. This is a special case of the crepant resolution conjecture for equivariant elliptic genera which was proven by Waelder [41, Thm 12] based on the non-equivariant case proven by Borisov-Libgobner [7]. The right hand side of the DMVV conjecture is easy to compute; consequently, Waelder’s result leads to the following formula:

Theorem 11 (Waelder).

$$\sum_{m=0}^{\infty} \text{Ell}_{q,y}(\text{Hilb}^m(\mathbb{C}^2), t) Q^m = \prod_{m=1}^{\infty} \prod_{n=0}^{\infty} \prod_{l,k \in \mathbb{Z}} (1 - t^k q^n y^l Q^m)^{-c(n,m,l,k)}$$

where the coefficients $c(n, l, k)$ are defined by

$$\text{Ell}_{q,y}(\mathbb{C}^2, t) = \frac{\theta_1(q, yt)\theta_1(q, yt^{-1})}{\theta_1(q, t)\theta_1(q, t^{-1})} = \sum_{n=0}^{\infty} \sum_{k, l \in \mathbb{Z}} c(n, l, k) q^n y^l t^k.$$
We prove the following result about the coefficients $c(n, l, k)$.

Proposition 12. Let

$$\text{Ell}_{q,y}(C^2, t) = \sum_{n=0}^{\infty} \sum_{l,k \in \mathbb{Z}} c(n, l, k) q^n y^l t^k.$$

Then $c(n, l, k)$ only depends on the pair $(4n - l^2, k)$. Writing

$$c(n, l, k) = c(4n - l^2, k)$$

we have $c(a, k) = 0$ if $a < -1$ and

$$\sum_{a=-1}^{\infty} \sum_{k \in \mathbb{Z}} c(a, k) Q^a t^k = \frac{\sum_{k \in \mathbb{Z}} Q^{2k} (-t)^k}{\left(\sum_{k \in \mathbb{Z} + \frac{1}{2}} Q^{2k} (-t)^k \right)^2} = \frac{\theta_4(Q^2, t)}{\theta_1(Q^4, t)^2}.$$

Examining the first two terms in the Q expansion we get the following easy corollary:

Corollary 13. The coefficients $c(a, k)$ for $a = -1, 0$ are given by

$$c(-1, k) = \begin{cases}
0, & -k \leq 0 \\
-k, & k > 0
\end{cases}$$

$$c(0, k) = \begin{cases}
0, & k < 0 \\
1, & k = 0 \\
2k, & k > 0
\end{cases}$$

Applying the Jacobi triple product identity, we also get the following corollary.

Corollary 14.

$$\sum_{a=-1}^{\infty} \sum_{k \in \mathbb{Z}} c(a, k) Q^{a+1} t^k = \frac{-t}{(1-t)^2} \prod_{n=1}^{\infty} \frac{(1-Q^{2n})(1-tQ^{2n-1})(1-t^{-1}Q^{2n-1})}{(1-Q^{4n})^2(1-tQ^{4n})^2(1-t^{-1}Q^{4n})^2}.$$

2.1. **Proof of Proposition 12.** From the product formula for $\theta_1(q, t)$ and the fact that $\theta_1(q, t^{-1}) = -\theta_1(q, t)$, we see we may write

$$\theta_1(q, t)^{-1} \theta_1(q, t^{-1})^{-1} = -\theta_1(q, t)^{-2} = q^{-\frac{1}{2}} \frac{t}{(1-t)^2} \sum_{i=0}^{\infty} \delta_i(t) q^i$$

where $\delta_0 = 1$ and $\delta_i(t) \in \mathbb{Z}[t, t^{-1}]$. Then

$$\text{Ell}_{q,y}(C^2, t) = q^{-\frac{1}{2}} \frac{t}{(1-t)^2} \sum_{i=0}^{\infty} \delta_i(t) q^i \sum_{n,m \in \mathbb{Z}} q^{\frac{1}{2}(n+\frac{1}{2})^2 + \frac{1}{2}(m+\frac{1}{2})^2} (-yt)^{n+\frac{1}{2}} (-yt^{-1})^{m+\frac{1}{2}}.$$
If we let \(l = m + n + 1 \) and \(b = n - m \) and we note that then \(l \equiv b + 1 \mod 2 \) and \(\frac{1}{2}(n + \frac{1}{2})^2 + \frac{1}{2}(m + \frac{1}{2})^2 = \frac{1}{4}(l^2 + b^2) \) we get

\[
\text{Ell}_{q,y}(\mathbb{C}^2, t) = \frac{-t}{(1-t)^2} \sum_{i=0}^{\infty} \delta_i(t) q^i \sum_{l, b \in \mathbb{Z}, l \equiv b+1 \mod 2} q^{\frac{1}{2}(l^2+b^2-1)} y^l (-t)^b
\]

The terms with \(q^n y^l \) in the above sum occur when \(n = i + \frac{1}{4}(l^2 + b^2 - 1) \) and thus when \(4n - l^2 = 4i + b^2 - 1 \geq -1 \). Therefore the \(q^n y^l \) coefficient of \(\text{Ell}_{(q,y)}(\mathbb{C}^2, t) \) only depends on \(a = 4n - l^2 \) and is zero if \(a < -1 \):

\[
\text{Coeff}_{q^n y^l} \left[\text{Ell}_{(q,y)}(\mathbb{C}^2, t) \right] = \sum_{k \in \mathbb{Z}} c(n, l, k) t^k
\]

where

\[
\sum_{a=-1}^{\infty} \sum_{k \in \mathbb{Z}} c(a, k) Q^a t^k = \frac{-t}{(1-t)^2} \sum_{i=0}^{\infty} \sum_{b \in \mathbb{Z}} Q^{4i+b^2-1} (-t)^b \delta_i(t)
\]

\[
= \frac{-t}{(1-t)^2} \sum_{i=0}^{\infty} \delta_i(t) Q^i \sum_{b \in \mathbb{Z}} Q^{b^2} (-t)^b
\]

\[
= \theta_1(Q^4, t)^{-2} \sum_{b \in \mathbb{Z}} Q^{b^2} (-t)^b
\]

\[
= \frac{\sum_{k \in \mathbb{Z}} Q^{k^2} (-t)^k}{\left(\sum_{k \in \mathbb{Z} + \frac{1}{2}} Q^{2k^2} (-t)^k \right)^2}.
\]

\[\square\]

3. Computing the Partition Function

3.1. Overview. Our basic strategy for computing the partition function \(Z_{\Gamma}(X_{\text{ban}}) \) is to stratify the Hilbert scheme, where each strata parameterizes subschemes supported on a prescribed set of fibers of the map \(\pi : X \to \mathbb{P}^1 \). Each stratum admits an action by the Mordell-Weil group of sections on an infinitesimal neighborhood of a fiber.

We use these group actions to reduce the \(\nu \)-weighted Euler characteristic computation to the fixed point set of the group actions. The fixed points correspond to
subschemes which are supported on an infinitesimal neighborhood of the banana configurations and which are formally locally given by monomial ideals. We can count these fixed points (weighted by ν) using a technique adapted from [29] to our setting. The outcome is an expression for the partition function in terms of the topological vertex.

The vertex expression we get has essentially been computed in the physics literature. The bulk of the computation is done by Hollowood, Iqbal, and Vafa [20] using geometric engineering. Their derivation requires a certain geometrically motivated combinatorial conjecture. The conjecture was a special case of the Equivariant Crepant Resolution Conjecture for Elliptic Genera (also called the equivariant DMVV conjecture after Dijkgraaf-Moore-Verlinde-Verlinde [16]), which was subsequently proven by Borisov-Libgobner and Waelder [7, 41] using motivic integration. We present a mathematically self-contained version of the Hollowood-Iqbal-Vafa derivation in § 4.

3.2. Preliminaries on Notation and Euler Characteristics. For any scheme Y over \mathbb{C}, let $e(Y)$ be the topological Euler characteristic of Y in the complex analytic topology. Note that Euler characteristic is independent of any nilpotent structures, i.e. $e(Y) = e(Y_{\text{red}})$.

For any constructible function $\mu : Y \to \mathbb{Z}$, let

$$e(Y, \mu) = \sum_{k \in \mathbb{Z}} k \cdot e(\mu^{-1}(k))$$

be the μ-weighted Euler characteristic of Y.

We will need the following standard facts about Euler characteristics.

- Euler characteristic defines a ring homomorphism $e : K_0(\text{Var}_\mathbb{C}) \to \mathbb{Z}$, i.e. it is additive under the decomposition of a scheme into an open set and its complement, and it is multiplicative on Cartesian products.

- For any constructible morphism $^7 f : Y \to Z$ we have (see [28])

$$e(Y, \mu) = e(Z, f_* \mu)$$

where $f_* \mu$ is the constructible function given by

$$(f_* \mu)(x) = e(f^{-1}(x), \mu).$$

^7A constructible morphism is a map which is regular on each piece of a decomposition of its domain into locally closed subsets.
• If \mathbb{C}^* acts on a scheme Y with fixed point locus $Y^{\mathbb{C}^*} \subset Y$, then (see [5])

$$e(Y) = e(Y^{\mathbb{C}^*}).$$

We will also use the following

Lemma 15. Let G be an algebraic group acting on V, a scheme (of finite type over \mathbb{C}). Let μ be a G-invariant constructible function on V. Suppose that each G-orbit has zero Euler characteristic, i.e. $e(O_x) = 0$ for all $x \in V$. Then $e(V, \mu) = 0$.

Proof. By a theorem of Rosenlicht [38, Thm 2], we have that for the action of any algebraic group G on any variety V, there is a dense open set $U \subset V$ and a morphism $\tau : U \to W$ to a variety W, such that for all $x \in U$, $\tau^{-1}(x)$ is a G-orbit. By iteratively applying the same theorem to $V \setminus U$, we obtain a locally closed G-equivariant stratification $V = \bigcup_{\alpha} U_{\alpha}$ such that the G-action on each strata has a geometric quotient

$$\tau_{\alpha} : U_{\alpha} \to W_{\alpha}.$$

Suppose that every G-orbit has zero Euler characteristic, $e(O_x) = 0$. Let μ be a G-invariant constructible function on V, then

$$e(V, \mu) = \sum_{\alpha} e(U_{\alpha}, \mu)$$

$$= \sum_{\alpha} e(W_{\alpha}, (\tau_{\alpha})_* (\mu))$$

$$= \sum_{\alpha} e(W_{\alpha}, 0)$$

$$= 0.$$

This proves the lemma in the case where V is a variety. For V a general scheme of finite type over \mathbb{C}, we can easily construct a G-equivariant stratification of the reduced space of V

$$V_{\text{red}} = V_1 \cup \cdots \cup V_N$$

such that each strata V_i is a variety. Then

$$e(V, \mu) = e(V_{\text{red}}, \mu) = \sum_{i=1}^{N} e(V_i, \mu) = 0.$$

\Box
We will use the notation
\[\text{Hilb}^\bullet (X_{\text{ban}}) = \sum_{d,n} \text{Hilb}^{\beta_{d,n}} (X_{\text{ban}}) Q_1^{d_1} Q_2^{d_2} Q_3^{d_3} (-p)^n \]
where we regard the right hand side as a formal series in \(Q_1, Q_2, Q_3 \), Laurent in \(p \), having coefficients in \(K_0(\text{Var}_C) \), the Grothendieck group of varieties\(^8\). We extend the operations in the Grothendieck group (addition, multiplication, and Euler characteristic) to the series in the obvious way. So for example, in this notation, the partition function is given by:
\[Z_\Gamma (X_{\text{ban}}) = e (\text{Hilb}^\bullet (X_{\text{ban}}))\).

We will apply the above notation more generally. Whenever we have any collection \(\{ A^{d,n} \} \) elements of a set (for example \(\mathbb{Z} \) or \(K_0(\text{Var}_C) \)) indexed by \((d, n) \), we will write:
\[A^\bullet = \sum_{d,n} A^{d,n} Q_1^{d_1} Q_2^{d_2} Q_3^{d_3} (-p)^n. \]

3.3. **Pushing forward the \(\nu \)-weighted Euler characteristic measure.** Let
\[\text{Conf}^k \mathbb{P}^1 = \text{Sym}^k \mathbb{P}^1 \setminus \Delta \]
be the configuration space of \(k \) unordered, distinct points in \(\mathbb{P}^1 \), i.e. the \(k \)th symmetric product of \(\mathbb{P}^1 \) with the big diagonal deleted. Let
\[\text{Conf} \mathbb{P}^1 = \bigcup_k \text{Conf}^k \mathbb{P}^1. \]

We define a constructible morphism by
\[\rho^{d,n} : \text{Hilb}^{\beta_{d,n}} (X_{\text{ban}}) \to \text{Conf} \mathbb{P}^1 \]
\[Z \mapsto \text{Supp}(\pi_* \mathcal{O}_Z) \]
Then using equation (3) and our bullet notation, we have
\[Z_\Gamma (X_{\text{ban}}) = e (\text{Hilb}^\bullet (X_{\text{ban}}), \nu) \]
\[= e (\text{Conf} \mathbb{P}^1, \rho_* \nu). \]

Note that the constructible function \(\rho_* \nu \) takes values in \(\mathbb{Z}[[Q_1, Q_2, Q_3]]((p)) \).

\(^8\)We note that \(\text{Hilb}^{0,0} (X_{\text{ban}}) \) is a single point corresponding to the empty subscheme. Thus the constant term of the series \(\text{Hilb}^\bullet (X_{\text{ban}}) \) is 1.
3.4. **Subschemes supported in an infinitesimal neighborhood of a fiber.** From here on out, we will write X for X_{ban} for the sake of brevity when there is no ambiguity. We will also suppress the superscripts β, n when they are understood and/or unimportant.

Definition 16. Let F_y be the fiber of $\pi : X \to \mathbb{P}^1$ over $y \in \mathbb{P}^1$. Let $F_y^{(k)}$ be the k-order infinitesimal neighborhood of F_y in X and let \hat{F}_y be the formal neighborhood of F_y in X. We define

$$\text{Hilb}(\hat{F}_y) \subset \text{Hilb}(X)$$

to be the locally closed subscheme of $\text{Hilb}(X)$ parameterizing subschemes $Z \subset X$ supported on \hat{F}_y, i.e. subschemes which are set theoretically, but necessarily scheme theoretically, supported in F_y. Finally, we define

$$\text{Hilb}(\hat{F}_y)$$

to be the formal neighborhood of $\text{Hilb}(\hat{F}_y)$ in $\text{Hilb}(X)$.

The value of the Behrend function $\nu : \text{Hilb}(X) \to \mathbb{Z}$ at a point only depends on the formal neighborhood of that point [23] inside the Hilbert scheme. Therefore ν restricted to $\text{Hilb}(\hat{F}_y)$ is completely determined by the formal scheme $\text{Hilb}(\hat{F}_y)$.

Remark 17. The closed points of $\text{Hilb}(\hat{F}_y)$ and $\text{Hilb}(\hat{F}_y)$ are of course the same; they correspond to subschemes $Z \subset X$ such that $Z_{\text{red}} \subset F_y$. However, $\text{Hilb}(\hat{F}_y)$ and $\text{Hilb}(\hat{F}_y)$ classify different families of subschemes. For example, the infinitesimal deformations of Z parameterized by $\text{Hilb}(\hat{F}_y)$ must preserve the closed condition $Z_{\text{red}} \subset F_y$, whereas $\text{Hilb}(\hat{F}_y)$ includes all infinitesimal deformations of Z, even those which (infinitesimally) violate the condition $Z_{\text{red}} \subset X$.

3.5. **Mordell-Weil groups and actions on $\text{Hilb}(\hat{F}_y)$**. Let

$$X^\circ = \{ x \in X \text{ such that } \pi : X \to \mathbb{P}^1 \text{ is smooth at } x \}.$$

In other words, X° is X with the 12 banana configurations removed. Then, after fixing a section $s_0 : \mathbb{P}^1 \to X^\circ$,

$$\pi^0 : X^\circ \to \mathbb{P}^1$$
has the structure of an Abelian group scheme over \mathbb{P}^1. Let $F_y^o = X^o \cap F_y$ be the group of the fiber over y. Let

$$\{x_1, \ldots, x_{12}\} \subset \mathbb{P}^1$$

be the points with singular fiber. Then for $y \notin \{x_1, \ldots, x_{12}\}$, $F_y^o \cong E \times E$, where E is an elliptic curve, and for $y \in \{x_1, \ldots, x_{12}\}$, $F_y^o \cong \mathbb{C}^* \times \mathbb{C}^*$.

Definition 18. Let $\pi^o : X^o_B \to B$ and $\pi : X_B \to B$ denote the B-schemes obtained from X^o and X by some base change $B \to \mathbb{P}^1$. We define $\text{MW}(B)$ be the Mordell-Weil group of sections of π^o over B.

If $B \to \text{Spec} \mathbb{C}$ is finite, then $\text{MW}(B)$ is the Weil restriction of $X^o_B \to B$ with respect to $B \to \text{Spec} \mathbb{C}$ and is thus an algebraic group over \mathbb{C}, see [8, §7 Thm 4].

We get an action of $\text{MW}(B)$ on X_B defined as follows (c.f. [8, §7 Thm 6]). The group scheme structure morphism $X^o_B \times_B X^o_B \to X^o_B$ extends (see [15]) to a morphism

$$X^o_B \times_B X_B \overset{+}{\longrightarrow} X_B.$$

We define the $\text{MW}(B)$ action on X_B by the composition

$$\text{MW}(B) \times X_B \overset{\phi}{\longrightarrow} X^o_B \times_B X_B \overset{+}{\longrightarrow} X_B,$$

where $\phi = (ev \circ (I\!d \times \pi), pr_{X_B}),$

$$ev : \text{MW}(B) \times B \to X_B$$

is the tautological evaluation map $(s, y) \mapsto s(y)$, and

$$pr_{X_B} : \text{MW}(B) \times X_B \to X_B$$

is projection. ϕ is well defined because $\pi \circ ev \circ (I\!d \times \pi) = \pi \circ pr_{X_B}$.

Concretely, if $x \in X_B$ is a point then the action of s on x is given by translation: $(s, x) \mapsto s(\pi(x)) + x$.

Let $\Delta_y^{(k)} \subset \mathbb{P}^1$ be the kth order thickening of $y \in \mathbb{P}^1$. Since

$$\Delta_y^{(k)} \cong \text{Spec} \mathbb{C}[\epsilon]/\epsilon^{k+1} \to \text{Spec} \mathbb{C}$$

is finite, $\text{MW}(\Delta_y^{(k)})$ is an algebraic group. Restriction of a section to the closed fiber expresses $\text{MW}(\Delta_y^{(k)})$ as an extension of F_y^o by a vector group of some dimension $D = D(k)$:

$$(4) \quad 0 \longrightarrow \mathbb{C}^D \longrightarrow \text{MW}(\Delta_y^{(k)}) \overset{r}{\longrightarrow} F_y^o \longrightarrow 0$$
We write $F_{k}^{(k)}$ for $X_{\Delta^{(k)}}$, i.e. the kth order thickening of the fiber F_y. The action of $\text{MW}(\Delta^{(k)}_y)$ on $F_{y}^{(k)}$ is compatible with the restriction homomorphisms

$$\text{MW}(\Delta^{(k+1)}_y) \to \text{MW}(\Delta^{(k)}_y)$$

and the inclusions

$$F_{y}^{(k)} \subset F_{y}^{(k+1)}.$$

Let

$$\text{MW}_{y}^{(\infty)} = \lim_{\leftarrow} \text{MW}(\Delta^{(k)}_y)$$

be the inverse limit group. Then by construction, $\text{MW}_{y}^{(\infty)}$ acts on \hat{F}_y, and this induces an action of $\text{MW}_{y}^{(\infty)}$ on $\text{Hilb}(\hat{F}_y)$ and on $\hat{\text{Hilb}}(\hat{F}_y)$. Note that

$$\text{Hilb}^{\beta,n}(\hat{F}_y) \subset \text{Hilb}^{\beta,n}(F_{y}^{(N)})$$

for some large $N = N(\beta, n)$ which depends on β and n. Therefore, $\text{Hilb}^{\beta,n}(\hat{F}_y)$ is acted on by the algebraic group $\text{MW}(\Delta^{(N)}_y)$. However, $\text{MW}(\Delta^{(N)}_y)$ does not act on $\hat{\text{Hilb}}^{\beta,n}(\hat{F}_y)$ since this includes all infinitesimal deformations of any $Z \subset \hat{F}_y$, which can involve finite neighborhoods of arbitrarily big orders. Thus only the pro-algebraic group $\text{MW}_{y}^{(\infty)}$ acts on $\hat{\text{Hilb}}^{\beta,n}(\hat{F}_y)$.

Since the Behrend function $\nu : \text{Hilb}(\hat{F}_y) \to \mathbb{Z}$ is determined by $\hat{\text{Hilb}}(\hat{F}_y)$, the action of $\text{MW}_{y}^{(\infty)}$ must preserve ν. Consequently we have:

Lemma 19. The Behrend function ν is invariant under the action of $\text{MW}(\Delta^{(N)}_y)$ on $\text{Hilb}^{\beta,n}(\hat{F}_y)$.

In general, we do not know if the sequence (4) splits. However, if F_y is a singular fiber so that $F_{y}^{\circ} \cong \mathbb{C}^{*} \times \mathbb{C}^{*}$, then (4) must split:

$$0 \longrightarrow \mathbb{C}^{D} \longrightarrow \text{MW}(\Delta^{(k)}_y) \xrightarrow{p} \mathbb{C}^{*} \times \mathbb{C}^{*} \longrightarrow 1$$

because then $\text{MW}(\Delta^{(k)}_y)$ is an affine commutative algebraic group over \mathbb{C} and hence a product of a torus and a vector space group. Consequently, we have the following

Lemma 20. The group $\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on $\text{Hilb}(\hat{F}_{\text{sing}})$ where \hat{F}_{sing} is any singular fiber. Moreover, the action extends to $\hat{\text{Hilb}}(\hat{F}_{\text{sing}})$ and thus it preserves the Behrend function ν.
3.6. Reduction of the computation to the singular fibers.

Lemma 21. Let F_y be a smooth fiber, then

$$e(\text{Hilb}(\hat{F}_y), \nu) = 0.$$

Proof. By Lemma 19, $\text{MW} = \text{MW}(\Delta_y^{N(\beta,n)})$ acts on $\text{Hilb}^{\beta,4,n}(\hat{F}_y)$ preserving ν. Moreover, the action is fixed point free since the group MW acts transitively on \hat{F}_y. Let Stab_x be the MW-stabilizer of $x \in \text{Hilb}(\hat{F}_y)$ and let $Z_x \subset \hat{F}_y$ be the subscheme corresponding to x. Then the image $r(\text{Stab}_x)$ is a proper subgroup of F_y since there is some element in F_y which does not preserve $\text{Supp}(Z_x)$. Then the orbit of x, $O_x = \text{MW}/\text{Stab}_x$ is an Abelian group fitting into the following exact sequence

$$0 \longrightarrow \mathbb{C}^{CD} \xrightarrow{\text{Stab}_x \cap \mathbb{C}^{CD}} O_x \xrightarrow{\text{F}_y / r(\text{Stab}_x)} 0.$$

Therefore, O_x is given as the total space of a smooth fibration with base $F_y / r(\text{Stab}_x)$, a positive dimensional Abelian variety. It follows that $e(O_x) = 0$. We then can apply Lemma 15 with $G = \text{MW}$, $V = \text{Hilb}(\hat{F}_y)$, and $\mu = \nu$ to complete the proof.

Recall that $Z_{\Gamma}(X) = e(\text{Conf } \mathbb{P}^1, \rho_*^*\nu)$. To compute $\rho_*^*\nu$, we note that the preimage

$$(\rho^*)^{-1}(\{y_1, \ldots, y_k\}) = \text{Hilb}^*(\hat{F}_{y_1} \cup \cdots \cup \hat{F}_{y_k}) = \prod_{i=1}^k \text{Hilb}^*(\hat{F}_{y_i})$$

where the product takes place in the ring $K_0(\text{Var}_{\mathbb{C}})[[Q_1, Q_2, Q_3]]((p))$.

Lemma 21 implies that

$$(\rho_*^*\nu)(\{y_1, \ldots, y_k\}) = 0 \quad \text{if} \quad \{y_1, \ldots, y_k\} \not\subset \{x_1, \ldots, x_{12}\}$$

where $F_{x_1}, \ldots, F_{x_{12}}$ are the 12 singular fibers.
In other words, we have shown that the constructible function \(\rho^* \nu \) is supported on \(\text{Conf}(\{x_1, \ldots, x_{12}\}) \subset \text{Conf} \mathbb{P}^1 \). Therefore

\[
Z_\Gamma(X) = e(\text{Conf} \mathbb{P}^1, \nu) \\
= e(\text{Conf}(\{x_1, \ldots, x_{12}\}), \rho^*) \\
= e(\text{Hilb}^*(\widehat{F}_{x_1} \cup \cdots \cup \widehat{F}_{x_{12}}), \nu) \\
= \prod_{i=1}^{12} e(\text{Hilb}^*(\widehat{F}_{x_i}), \nu).
\]

Since all the formal neighborhoods \(\widehat{F}_{x_i} \) are isomorphic, we will write \(\widehat{F}_{\text{ban}} \) for this formal scheme, i.e. the formal neighborhood of \(F_{\text{ban}} \), a fiber containing a banana configuration. In conclusion we have

\[
(5) \quad Z_\Gamma(X_{\text{ban}}) = e\left(\widehat{\text{Hilb}}^*(\widehat{F}_{\text{ban}}), \nu\right)^{12}.
\]

Note that here \(\nu \) is the restriction of the Behrend function on \(\text{Hilb}(X) \) to \(\text{Hilb}(\widehat{F}_{\text{ban}}) \), but since this is determined by \(\widehat{\text{Hilb}}(\widehat{F}_{\text{ban}}) \), we may regard \(\nu \) as the Behrend function of the formal scheme \(\text{Hilb}(\widehat{F}_{\text{ban}}) \). We will write

\[
Z(\widehat{F}_{\text{ban}}) = e\left(\widehat{\text{Hilb}}^*(\widehat{F}_{\text{ban}}), \nu\right).
\]

Remark 22. For more general banana manifolds, the same proof shows that equation 5 holds with the 12 replaced by \(N \), the number of singular fibers (i.e. the number of banana configurations).

3.7. **Reduction to \(\mathbb{C}^* \times \mathbb{C}^* \)-fixed subschemes.** The \(\mathbb{C}^* \times \mathbb{C}^* \) action on \(\widehat{F}_{\text{ban}} \) preserves the canonical class by construction. In particular, the action of \(\mathbb{C}^* \times \mathbb{C}^* \) is compatible with the symmetric obstruction theory [4] of \(\text{Hilb}(X) \), restricted to \(\widehat{\text{Hilb}}(X) \). We note that in order to work in this formal setting, we must use the symmetric obstruction theory associated to the formal moduli space (defined by Jiang in [23]). The result of Behrend and Fantechi [4] is that for an isolated fixed point \(P \in \widehat{\text{Hilb}}(\widehat{F}_{\text{ban}}) \), the value of the Behrend function is given by

\[
\nu(P) = (-1)^{\dim T_P},
\]

where

\[
T_P = T_P \widehat{\text{Hilb}}(\widehat{F}_{\text{ban}}).
\]
is the Zariski tangent space of $P \in \hat{\text{Hilb}}(\hat{F}_{\text{ban}})$. We note that

$$T_P = \text{Ext}_0^1(I_{Z_P}, I_{Z_P})$$

where Z_P is the subscheme associated to P (see [29]).

We will see that the fixed points of the action are isolated. It then follows that

$$Z(\hat{F}_{\text{ban}}) = e\left(\hat{\text{Hilb}}(\hat{F}_{\text{ban}}, \nu)\right) = e\left(\hat{\text{Hilb}}(\hat{F}_{\text{ban}}, \mathbb{C}^\times \times \mathbb{C}^\times, \nu)\right) = \sum_{P \in \hat{\text{Hilb}}(\hat{F}_{\text{ban}}, \mathbb{C}^\times \times \mathbb{C}^\times)} (-1)^{\text{dim} T_P} Q_1^{d_1(P)} Q_2^{d_2(P)} Q_3^{d_3(P)} (-p)^{\chi(O_{Z_P})}$$

where $d_i(P)$ is defined by:

$$[Z_P] = d_1(P)C_1 + d_2(P)C_2 + d_3(P)C_3.$$

Proposition 23. The $\mathbb{C}^\times \times \mathbb{C}^\times$ fixed points $P \in \hat{\text{Hilb}}(\hat{F}_{\text{ban}}, \mathbb{C}^\times \times \mathbb{C}^\times)$ are isolated and the fixed point set is in bijective correspondence with the set $\{R_1, R_2, R_3, \pi_1, \pi_2\}$ where R_1, R_2, R_3 is a triple of 2D partitions and π_1, π_2 is a pair of 3D partitions asymptotic to (R_1, R_2, R_3) and (R'_1, R'_2, R'_3) respectively. Moreover, the discrete invariants of the corresponding subscheme are given by

$$d_i(P) = |R_i|$$

$$\chi(O_{Z_P}) = |\pi_1| + |\pi_2| + \frac{1}{2} \sum_{i=1}^3 ||R_i||^2 + ||R'_i||^2$$

$$(-1)^{\text{dim} T_P} = (-1)^{\chi(O_{Z_P}) + |R_1| + |R_2| + |R_3|}$$

where $|R_i|$ is the size of a partition, $|\pi_i|$ is the normalized volume [11, 34], and $||R_i||^2$ denotes the sum of the squares of the parts (c.f. § 4).

This proposition will be proved in the next section, but we first use it to finish the computation $Z(\hat{F}_{\text{ban}})$. First recall that the topological vertex is defined to be the generating function

$$V_{R_1 R_2 R_3}(p) = \sum_{\pi} p^{|\pi|}$$

\footnote{see for example [11, Def. 1] for a definition of 3D partitions asymptotic to a triple of 2D partitions. Also, A' denotes the partition conjugate to A, see § 4.}
where the sum is over all 3D-partitions asymptotic to \((R_1, R_2, R_3)\) \([11, \text{Def. } 2], [34]\). Then by the proposition we obtain

\[
Z(\hat{F}_{\text{ban}}) = \sum_{R_1 R_2 R_3} (-Q_1)^{|R_1|} (-Q_2)^{|R_2|} (-Q_3)^{|R_3|} p^{\frac{1}{2} \sum_{i=1}^{3} ||R_i||^2 + ||R_i'||^2} V_{R_1 R_2 R_3}(p) V_{R_1' R_2' R_3'}(p)
\]

\[
= M(p)^2 \sum_{R_1 R_2 R_3} (-Q_1)^{|R_1|} (-Q_2)^{|R_2|} (-Q_3)^{|R_3|} \tilde{V}_{R_1 R_2 R_3}(p) \tilde{V}_{R_1' R_2' R_3'}(p)
\]

where

\[
\tilde{V}_{R_1 R_2 R_3} = M(p)^{-1} p^{\frac{1}{2} ||R_1||^2 + ||R_2||^2 + ||R_3||^2} V_{R_1 R_2 R_3}
\]

is the normalized vertex. The main result of §4 (Theorem 25) then asserts:

\[
Z(\hat{F}_{\text{ban}}) = \prod_{a_i \geq 0} \prod_{k \in \mathbb{Z}, k > 0 \text{ if } a=0} (1 - Q_1 a_1 Q_2 a_2 Q_3 a_3 p^k)^{-e(||a||, k)}.
\]

This formula, along with equation (5) then proves Theorem 4.

3.8. Analysis of \(\mathbb{C}^* \times \mathbb{C}^*\)-fixed subschemes. The goal of this section is to prove Proposition 23.

To analyze the action of \(\mathbb{C}^* \times \mathbb{C}^*\) on \(\hat{F}_{\text{ban}}\) and determine the \(\mathbb{C}^* \times \mathbb{C}^*\) invariant subschemes, we obtain an explicit toric description of \(\hat{F}_{\text{ban}}\) using the following proposition. Informally, the proposition says that

(1) \(F_{\text{ban}}\) is obtained from \(\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1)\), the blow up of \(\mathbb{P}^1 \times \mathbb{P}^1\) at the points \((0, 0), (\infty, \infty)\), by gluing the three pairs of disjoint boundary divisors to each other in normal crossings.

(2) \(\hat{F}_{\text{ban}}\) is obtained from \(\hat{\text{Bl}}(\mathbb{P}^1 \times \mathbb{P}^1)\), the formal neighborhood of \(\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1)\) inside the total space of its canonical bundle, by an etalé gluing (which restricts to the normal crossing gluing of \(\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1)\)).

(3) The gluing is \(\mathbb{C}^* \times \mathbb{C}^*\) equivariant.

Let \(F_{\text{sing}} \subset X_{\text{sing}}\) be the image of \(F_{\text{ban}}\) under the blowup \(X_{\text{ban}} \rightarrow X_{\text{sing}}\). Let

\[
\sigma : F_{\text{sing}}^\text{norm} \rightarrow F_{\text{sing}}, \quad \tau : F_{\text{ban}}^\text{norm} \rightarrow F_{\text{ban}}
\]

be the normalizations. Define \(\hat{F}_{\text{ban}}^\text{norm}\) to be the formal scheme given by the ringed space \((F_{\text{ban}}^\text{norm}, \tau^* \hat{\mathcal{O}}_{\hat{F}_{\text{ban}}})\).
Proposition 24. Then the following hold

1. \(F^\text{norm}_{\text{sing}} \cong \mathbb{P}^1 \times \mathbb{P}^1 \).

2. \(F^\text{norm}_{\text{ban}} \cong \text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1) \), the blowup of \(F^\text{norm}_{\text{sing}} \) at the two points \((0,0)\) and \((\infty, \infty)\) (c.f. [1, Fig 4]).

3. \(\hat{F}^\text{norm}_{\text{ban}} \cong \text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1) \), the formal neighborhood of \(\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1) \) viewed as the zero section in \(\text{Tot}(K_{\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1)}) \), the total space of its canonical bundle.

4. The induced map \(\hat{F}^\text{norm}_{\text{ban}} \xrightarrow{\hat{\tau}} \hat{F}_{\text{ban}} \) is etale.

5. All of the above maps are \(\mathbb{C}^* \times \mathbb{C}^* \) equivariant.

These results are summarized in the following diagram:

\[
\begin{array}{cccccc}
\hat{F}_{\text{ban}} & \xleftarrow{\hat{\tau}} & \hat{F}^\text{norm}_{\text{ban}} & \cong & \text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1) \\
\downarrow & & \downarrow & & \downarrow \\
X_{\text{ban}} & \xleftarrow{\tau} & X^\text{norm}_{\text{ban}} & \cong & \text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1) & \hookrightarrow \text{Tot}(K_{\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1)}) \\
\downarrow & & \downarrow & & \downarrow & \xrightarrow{\text{Blow up } (0,0) \text{ and } (\infty, \infty)} \\
X_{\text{sing}} & \xleftarrow{\sigma} & X^\text{norm}_{\text{sing}} & \cong & \mathbb{P}^1 \times \mathbb{P}^1 \\
\end{array}
\]

Proof. The proof of this proposition is primarily based on computations in formal local coordinates. We give the details in Section 5.2.

Using the equivariant etale morphism

\(\hat{\tau} : \hat{F}^\text{norm}_{\text{ban}} \to \hat{F}_{\text{ban}} \)

provided by the lemma, we may study \(\mathbb{C}^* \times \mathbb{C}^* \)-invariant subschemes of \(\hat{F}_{\text{ban}} \) by studying \(\mathbb{C}^* \times \mathbb{C}^* \)-invariant of \(\hat{F}^\text{norm}_{\text{ban}} \) satisfying the decent condition. Since the only proper, invariant subschemes of

\(K_{\text{Bl}} := \text{Tot}(K_{\text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1)}) \)

are supported on \(\hat{F}^\text{norm}_{\text{ban}} \subset K_{\text{Bl}} \), we may consider torus invariant subschemes of the toric threefold \(K_{\text{Bl}} \) and use the method of MNOP [29] to count such subschemes.
— subject to the condition that such subschemes descend under the étale relation given by \(\hat{\tau} \).

A torus invariant subscheme of a toric Calabi-Yau threefold is determined by combinatorial data attached to its web diagram, a trivalent planar graph (which includes non-compact edges). Namely, each edge is labelled by a 2D partition and each vertex is labelled by a 3D partition which is asymptotic to the three 2D partitions given by the incident edges (see [29] or also [10, §3 and §B]). The web diagram of \(K_{\text{Bl}} \) is a hexagon with 6 additional non-compact edges (the graph on the right in Figure 5.2). The étale relation identifies the six vertices to two distinct vertices corresponding to the points \(\{ p, q \} \) in the banana configuration. The relation also identifies the edges to three distinct edges corresponding to the curves \(C_1, C_2, C_3 \) in the banana configuration. Each \(\mathbb{C}^* \times \mathbb{C}^* \) invariant subscheme is thus determined by three 2D partitions \(R_1, R_2, R_3 \) and two 3D partitions \(\pi_1, \pi_2 \). The quantities \(d_i(P), \chi(O_Z_P), \) and \((-1)^{\dim T_P} \) are computed by MNOP in terms of the combinatorial data associated to the fixed point \(P \) for toric Calabi-Yau threefolds. Their computation applies in our setting (of a formal Calabi-Yau threefold) as well. Their proofs are based on computing with the Čech open cover given by the \(\mathbb{C}^3 \) coordinate charts, but we can equally well use the Čech cover obtained by intersecting the toric open cover on \(K_{\text{Bl}} \) with the formal neighborhood of the banana configuration, and then identifying via the étale relation. The proof that fixed points are isolated [29, Lemma 6], the computation of the degree and Euler characteristic [29, §4.4], and the computation of the parity of the dimensional of the tangent space [29, Thm 2] all work with this more general Čech cover.

Applying the formulas of MNOP is then straightforward. The formulas in our Proposition 23 follow directly from the formulas in [29, §4.4] (in particular Lemma 5), [29, Theorem 2], and the fact that

\[
\sum_{(i,j) \in R} (i + j + 1) = \frac{1}{2}(||R||^2 + ||R'||^2).
\]

This completes the proof of Proposition 23.

4. THE VERTEX CALCULATION

Let

\[
\tilde{V}_{R_1 R_2 R_3}(p) = s_{R_1}(p^{-\rho}) \sum_A s_{R_1/A}(p^{-R_3-\rho}) s_{R_2/A}(p^{-R_3-\rho})
\]
be the normalized vertex and let (see section 3.7)

\[Z(\hat{F}_{\text{ban}}) = M(p)^2 \sum_{R_1, R_2, R_3} (-Q_1)^{R_1} (-Q_2)^{R_2} (-Q_3)^{R_3} \prod_{i=1}^{3} \tilde{V}_{R_i} (p) \prod_{i=1}^{3} \tilde{V}_{R_i} (p) \]

where \[M(p) = \prod_{m=1}^{\infty} (1 - p^m)^{-m}. \]

The purpose of this section is to prove the following.

Theorem 25.

\[Z(\hat{F}_{\text{ban}}) = \prod_{a_i \geq 0} \prod_{k \in \mathbb{Z}, k > 0} (1 - Q_1^{a_1} Q_2^{a_2} Q_3^{a_3} p^k)^{-c(||a||, k)} \]

where \(c(a, k) \) is given by Proposition 12.

Most of this computation has previously appeared in the physics literature under the guise of geometric engineering (in this case a duality between a certain six dimensional \(U(1) \) gauge theory and a certain topological string theory). The main reference is Hollowood-Iqbal-Vafa [20]. This calculation was also studied in [26]. These computations assumed an equality between the generating function for the equivariant elliptic genera of \(\text{Hilb}^n(\mathbb{C}^2) \), and the orbifold equivariant elliptic genera of \(\text{Sym}^n(\mathbb{C}^2) \) which they call the DMVV conjecture (after [16]). This is an instance of the crepant resolution conjecture for elliptic genera, proven in the compact case by Borisov-Libgober [7] and the equivariant case by Waelder [41].

We give the derivation here in full detail. We have filled in some minor details that are missing from the previous accounts and have collected all the needed results in one place.

4.1. Overview of computation

After collecting some standard Schur function identities and proving a few new ones in the next subsection, we proceed to the main computation. The basic structure is as follows.

1. Writing

\[Z_{\text{ban}} = M(p)^{-2} Z(\hat{F}_{\text{ban}}) = \sum_{R} (-Q_3)^{|R|} Z_R (Q_1, Q_2, p) \]

we use a series of Schur function identities to simplify \(Z_R \) and write it as a product

\[Z_R = Z_{\text{prod}} \cdot Z_{\text{hook}, R} \]

where \(Z_{\text{prod}} \) is a product of terms which do not depend on \(R \) and \(Z_{\text{hook}, R} \) is also a product of terms which depend on the hook-lengths of \(R \).
(2) We observe that after the change of variables

\[Q_1 = y, \quad Q_2 = y^{-1}q, \quad Q_3 = y^{-1}Q, \quad p = t \]

the product \(Z_{\text{hook}, R} \) is exactly the contribution of a \(\mathbb{C}^* \)-fixed point to the computation of

\[\sum_{n=0}^{\infty} \text{Ell}_{q,y}(\text{Hilb}(\mathbb{C}^2), t) Q^n, \]

the elliptic genera of the Hilbert schemes, via Atiyah-Bott localization. Here \(\lambda \in \mathbb{C}^* \) acts on the factors of \(\mathbb{C}^2 \) with opposite weights and \(t \) is the equivariant parameter.

(3) An product formula for \(\sum_{n=0}^{\infty} \text{Ell}_{q,y}(\text{Hilb}(\mathbb{C}^2), t) Q^n \) was conjectured by Dijkgraaf-Moore-Verlinde-Verlinde [16], and proven by Borisov-Libgobner and Waelder [7, 41]. Using that formula, substituting back to the \(Q_1, Q_2, Q_3, p \) variables, and performing a few easy manipulations, we arrive at Theorem 4.

4.2. Notation and Schur function identities. We will use capital letters \(R, A, B, C, \) etc. to denote partitions. Via its diagram, we regard a partition \(A \) as a finite subset of \(\mathbb{N} \times \mathbb{N} \) where if \((i, j) \in A \) then \((i-1, j) \in A \) and \((i, j-1) \in A \). The rows or parts of \(A \) are the integers \(A_j = \max \{ i | (i, j) \in A \} \). We use \(' \) to denote the conjugate partition \(A' = \{ (i, j) : (j, i) \in A \} \), and we write

\[|A| = \sum_j A_j, \quad ||A||^2 = \sum_j A_j^2, \]

For each \((i, j) \in A\) we define the hook length:

\[h_{ij}(A) = A_i + A'_j - i - j + 1. \]

We write \(\square \) for the unique partition of size 1.

We also use the notation

\[M(u, p) = \prod_{m=1}^{\infty} (1 - up^m)^{-m} \]

and the short hand \(M(p) = M(1, p) \).
For a collection of variables $x = (x_1, x_2, \ldots)$ and two partitions A and B let $s_{A/B}(x) = s_{A/B}(x_1, x_2, \ldots)$ denote the skew Schur function (see for example [27, § 5]). Let

$$\rho = \left(-\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}, \ldots \right)$$

so that for example $p^{-R_1 - \rho}$ is notation for the variable list

$$\left(p^{-R_1 + \frac{1}{2}}, p^{-R_2 + \frac{1}{2}}, \ldots \right).$$

Okounkov-Reshetikhin-Vafa derived a formula for the topological vertex in terms of skew Schur functions. Translating their formulas [34, 3.20& 3.21] into our notation, we get:

$$V_{R_1 R_2 R_3}(p) = M(p) p^{-\frac{1}{2}(\|R_1\|^2 + \|R_2\|^2 + \|R_3\|^2)} \tilde{V}_{R_1 R_2 R_3}(p)$$

where we’ve defined

$$\tilde{V}_{R_1 R_2 R_3}(p) = s_{R_3'}(p^{-\rho}) \sum_A s_{R_1'/A}(p^{-R_3 - \rho}) \cdot s_{R_2/A}(p^{-R_3 - \rho}).$$

We will need the following Schur function identities. We remark that the Schur functions which appear are all Laurent expansions in p or in p^{-1} of rational functions in p and many of the identities should be understood as equalities of rational functions.

From [34, 3.10] we have10

$$s_{A/B}(p^{C + \rho}) = (-1)^{|A| - |B|} s_{A'/B'}(p^{-C' - \rho}).$$

From [27, pg 45]:

$$s_R(1, p, p^2, \ldots) = p^{n(R)} \prod_{(i,j) \in R} \frac{1}{1 - p^{h_{ij}(R)}}$$

where [27, pg 3] $n(R) = \frac{1}{2}||R'||^2 - \frac{1}{2}|R|$ and so using the homogeneity of s_R we see that

$$s_R(p^{-\rho}) = p^{\frac{1}{2}||R'||^2} \prod_{i,j \in R} \frac{1}{1 - p^{h_{ij}(R)}}$$

10 There is a typo in equation 3.10 in [34] — the exponent on the right hand side should be $-\nu' - \rho$.

and so we arrive at

\[s_R(p^{-\rho})s_{\bar{R}}(p^{-\rho}) = (-1)^{|R|} \prod_{i,j \in R} \frac{1}{(1 - p^{h_{ij}(R)})(1 - p^{-h_{ij}(R)})}. \]

We will also need the following identity [27, pg 93(2)]

\[\sum_{R_1} s_{R_1/B}(x) s_{R_1'/A}(y) = \prod_{i,j=1}^{\infty} (1 + x_i y_j) \sum_{C} s_{A'/C}(x) s_{B'/C}(y). \]

Finally we will need the following lemma.

Lemma 26. The following equalities hold as formal power series in \(u \) whose coefficients are rational functions of \(p \).

\[
\prod_{j,k=1}^{\infty} \left(1 - up^{R_j + R'_k - j - k + 1}\right) = M(u, p)^{-1} \prod_{j,k \in R} \left(1 - up^{h_{jk}(R)}\right) \left(1 - up^{-h_{jk}(R)}\right)
\]

Note that the right hand side of the equations are invariant under \(p \leftrightarrow p^{-1} \) and so we get two more identities by replacing \(p \) by \(p^{-1} \) on the left hand side of the above equations.

Proof. Moving the \(M(u, p) \) to the left hand side of the first equation and then taking the log, we get

\[
\log \left(M(u, p) \prod_{j,k=1}^{\infty} \left(1 - up^{R_j + R'_k - j - k + 1}\right) \right)
= \log \left(\prod_{j,k=1}^{\infty} \left(1 - up^{j+k-1}\right)^{-1} \right) + \log \left(\prod_{j,k=1}^{\infty} \left(1 - up^{R_j + R'_k - j - k + 1}\right) \right)
\]

\[
= \sum_{n \geq 1} \frac{u^n}{n} \sum_{j,k \geq 1} \left(p^n(j+k-1) - p^n(R_j + R'_k - j - k + 1)\right)
= \sum_{n \geq 1} -\frac{u^n}{n} P_R(p^n)
\]
where we’ve defined

\[P_R(x) = \sum_{j,k \geq 1} \left(x^{R_j + R'_k - j - k + 1} - x^{j+k-1} \right) \]

\[= \left(\sum_{j \geq 1} x^{R_j - j + \frac{1}{2}} \sum_{k \geq 1} x^{R_k - k + \frac{1}{2}} \right) - \frac{x}{(1-x)^2} \]

\[= s_\square (x^{R+\rho})s_\square (x^{R'+\rho}) - \frac{x}{(1-x)^2} \]

Since by equation (10), we have

\[s_\square (x^{R+\rho}) = -s_\square (x^{-R'-\rho}) , \]

we see from the above equation that \(P_R(x) \) is a sum of two rational functions in \(x \), each invariant under \(x \leftrightarrow x^{-1} \). Moreover, all but a finite number of terms in the sum

\[\sum_{j,k \geq 1} \left(x^{R_j + R'_k - j - k + 1} - x^{-j-i+1} \right) = P_R(x) \]

cancel and so we deduce that \(P_R(x) \) is a Laurent polynomial which is invariant under \(x \leftrightarrow 1/x \). Consequently, \(P_R(x) \) is uniquely determined by its terms with positive exponents. Since

\[R_j + R'_k - j - k + 1 = \begin{cases} h_{jk}(R) & \text{if } (j,k) \in R \\ \text{negative} & \text{if } (j,k) \notin R \end{cases} \]

we see that the terms with positive exponent in the above expression for \(P_R \) are precisely \(x^{h_{jk}(R)} \) where \((j,k) \in R\). Therefore

\[P_R(x) = \sum_{j,k \in R} \left(x^{h_{jk}(R)} + x^{-h_{jk}(R)} \right) . \]
Substituting back, we find

$$\log \left(M(u, p) \prod_{j,k=1}^{\infty} \left(1 - up^{R_j + R'_k - j - k + 1} \right) \right)$$

$$= \sum_{n \geq 1} -\frac{n^u}{n} \sum_{j,k \in R} \left(x^{h_{jk}(R)} + x^{-h_{jk}(R)} \right)$$

$$= \sum_{j,k \in R} \log \left(1 - up^{h_{jk}(R)} \right) + \log \left(1 - up^{-h_{jk}(R)} \right)$$

$$= \log \prod_{j,k \in R} \left(1 - up^{h_{jk}(R)} \right) \left(1 - up^{-h_{jk}(R)} \right)$$

which proves equation (12). To prove equation (13), we observe that since by equation (10)

$$\sum_{k \geq 1} p^{R_k - k + \frac{1}{2}} = -\sum_{k \geq 1} p^{-R_k + k - \frac{1}{2}}$$

so we have

$$-\sum_{j,k \geq 1} \left(x^{-R_j + R_k + j - k} + x^{j + k - 1} \right) = \sum_{j,k \in R} \left(x^{h_{jk}(R)} + x^{-h_{jk}(R)} \right).$$

Equation (13) then follows from a similar logarithm argument as we did for equation (12).

4.3. The main derivation. Recall that

$$Z'_{ban} = M(p)^{-2} Z(\hat{F}_{ban})$$

so that

$$Z'_{ban} = \sum_{R_1 R_2 R_3} (-Q_1)^{R_1} (-Q_2)^{R_2} (-Q_3)^{R_3} \tilde{V}_{R_1 R_2 R_3} \tilde{V}_{R_1' R_2' R_3'}.$$
where

\[
Z_R = \sum_{R_1, R_2} (-Q_1)^{R_1} (-Q_2)^{R_2} \tilde{V}_{R_1, R_2} R \tilde{V}_{R', R''}
\]

\[
= s_R(p^{-\rho}) s_{R'}(p^{-\rho}) \sum_{A B R_1 R_2} (-Q_1)^{R_1} (-Q_2)^{R_2} \cdot s_{R'/A}(p^{-R'-\rho}) \cdot s_{R_2/A}(p^{-R'-\rho})
\]

\[
= s_R(p^{-\rho}) s_{R'}(p^{-\rho}) \cdot \sum_{A B R_2 C} (-Q_2)^{R_2} (-Q_1)^B \cdot s_{R_2/A}(p^{-R'-\rho}) \cdot s_{R'/B}(p^{-R'-\rho})
\]

\[
\cdot \sum_{R_1} s_{R_1/B}(-Q_1 p^{-R'-\rho}) \cdot s_{R'/A}(p^{-R'-\rho})
\]

From [27, (2), page 93] we have

\[
\sum_{R_1} s_{R_1/B}(x)s_{R'/A}(y) = \prod_{i,j=1}^{\infty} (1 + x_i y_j) \sum_C s_{A'/C}(x)s_{B'/C'}(y).
\]

Using the above and equation (10) we get

\[
Z_R = (-1)^R \prod_{i,j \in R} (1 - p^{h_{ij}(R)})^{-1} (1 - p^{-h_{ij}(R)})^{-1} \cdot \prod_{i,j=1}^{\infty} (1 - Q_1 p^{i+j-1-R'_i-R'_j})
\]

\[
\cdot \sum_{A B R_2 C} (-Q_2)^{R_2} (-Q_1)^B \cdot s_{R_2/A}(p^{-R'-\rho}) \cdot s_{R'/B}(p^{-R'-\rho})
\]

\[
\cdot s_{A'/C}(-Q_1 p^{-R'-\rho}) \cdot s_{B'/C'}(p^{-R'-\rho}).
\]

Using equation (12) from Lemma 26 we get

\[
Z_R = H_R \sum_{C R_2} (-Q_2)^{R_2} (-Q_1)^C \cdot \sum_A s_{R_2/A}(p^{-R'-\rho}) \cdot s_{A'/C}(-Q_1 p^{-R'-\rho})
\]

\[
\cdot \sum_B s_{R'/B}(p^{-R'-\rho}) \cdot s_{B'/C'}(-Q_1 p^{-R'-\rho})
\]

(14)

where

\[
H_R = (-1)^R M(Q_1, p)^{-1} \prod_{i,j \in R} \frac{(1 - Q_1 p^{h_{ij}(R)})(1 - Q_1 p^{-h_{ij}(R)})}{(1 - p^{h_{ij}(R)})(1 - p^{-h_{ij}(R)})}
\]
Now using (see [27, 5.10 page 72])

\[
\sum_{\nu} s_{\lambda/\nu}(x)s_{\nu/\mu}(y) = s_{\lambda/\mu}(x, y)
\]

and equation (9), we can rewrite the second and third sums in equation 14 as

\[
\sum_{A} s_{R_{2}/A}(p-R'-\rho) \cdot s_{A'/C}(\bar{Q}_{1}p-R'-\rho) = s_{R_{2}/C'}(p^{-R'-\rho}, \bar{Q}_{1}p^{R+\rho})
\]

\[
\sum_{B} s_{R_{2}'/B}(p-R'-\rho) \cdot s_{B'/C'}(\bar{Q}_{1}p-R'-\rho) = s_{R_{2}'/C'}(p^{-R'-\rho}, \bar{Q}_{1}p^{R+\rho}).
\]

Substituting back into equation (14) we get

\[
Z_{R} = H_{R} \sum_{C,R_{2}} (-Q_{2})^{R_{2}}(-Q_{1})^{C} \cdot s_{R_{2}/C'}(p^{-R'-\rho}, \bar{Q}_{1}p^{R+\rho}) \cdot s_{R_{2}'/C'}(p^{-R'-\rho}, \bar{Q}_{1}p^{R+\rho})
\]

\[
= H_{R} \sum_{C,R_{2}} (Q_{1}Q_{2})^{R_{2}} \cdot s_{R_{2}/C'}(y, y') \cdot s_{R_{2}'/C'}(x, x')
\]

where

\[
y = \{-Q_{1}^{-1}p^{-R'-\rho}\}, \quad y' = \{-p^{R+\rho}\}, \quad x = \{p^{-R'-\rho}\}, \quad x' = \{Q_{1}p^{R+\rho}\}.
\]

We now use [27, page 94, equation (b)] to obtain

\[
Z_{R} = H_{R} \prod_{i=1}^{\infty} (1 - Q_{1}Q_{2})^{-1}
\]

\[
\cdot \prod_{j,k} (1 + Q_{1}Q_{2}x_{j}y_{k}) \cdot (1 + Q_{1}Q_{2}x'_{j}y'_{k}) \cdot (1 + Q_{1}Q_{2}x_{j}y'_{k}) \cdot (1 + Q_{1}Q_{2}x'_{j}y_{k})
\]

We deal with each of four factors in the product over \(j \) and \(k \) using Lemma 26:
\[
\prod_{j,k} (1 + Q_j^i Q_2^j x_j y_k) = \prod_{j,k} (1 - Q_1^{-1} Q_2^i p^{j+k-1-R'_k-R_j}) \\
= M(Q_1^{-1} Q_2^i, p)^{-1} \prod_{j,k \in R} (1 - Q_1^{-1} Q_2^i p^{h_j(R)}) (1 - Q_1^{-1} Q_2^i p^{-h_j(R)}) \\
\prod_{j,k} (1 + Q_1^i Q_2^i x_j y_k) = \prod_{j,k} (1 - Q_1^i Q_2^i p^{-j-k-R'_k+R'_j}) \\
= M(Q_1^i Q_2^i, p) \prod_{j,k \in R} (1 - Q_1^i Q_2^i p^{h_j(R)})^{-1} (1 - Q_1^i Q_2^i p^{-h_j(R)})^{-1} \\
\prod_{j,k} (1 + Q_1^i Q_2^i x_j y'_k) = \prod_{j,k} (1 - Q_1^i Q_2^i p^{j-k-1+R_k-R_j}) \\
= M(Q_1^i Q_2^i, p) \prod_{j,k \in R} (1 - Q_1^i Q_2^i p^{h_j(R)})^{-1} (1 - Q_1^i Q_2^i p^{-h_j(R)})^{-1} \\
\prod_{j,k} (1 + Q_1^i Q_2^i x'_j y_k) = \prod_{j,k} (1 - Q_1^{i+1} Q_2^i p^{-j-k+1+R_k+R'_j}) \\
= M(Q_1^{i+1} Q_2^i, p)^{-1} \prod_{j,k \in R} (1 - Q_1^{i+1} Q_2^i p^{h_j(R)}) (1 - Q_1^{i+1} Q_2^i p^{-h_j(R)})
\]

Substituting back we see

\[
Z_R = H_R \cdot \prod_{i=1}^{\infty} \frac{M(Q_1^i Q_2^i, p)^2}{(1 - Q_1^i Q_2^i) M(Q_1^{-1} Q_2^i, p) M(Q_1^{i+1} Q_2^i, p)} \\
\cdot \prod_{j,k \in R} \frac{(1 - Q_1^{i-1} Q_2^i p^{h_j(R)}) (1 - Q_1^{i-1} Q_2^i p^{-h_j(R)}) (1 - Q_1^{i+1} Q_2^i p^{h_j(R)}) (1 - Q_1^{i+1} Q_2^i p^{-h_j(R)})}{(1 - Q_1 Q_2^i p^{h_j(R)})^2 (1 - Q_1 Q_2^i p^{-h_j(R)})^2}
\]
Putting H_R back in we get

$$Z_R = Z_{\text{prod}} \cdot (-1)^R \cdot \prod_{j,k \in R} \frac{(1 - Q_1 p^{h_{jk}(R)}) (1 - Q_1 p^{-h_{jk}(R)})}{(1 - p^{h_{jk}(R)}) (1 - p^{-h_{jk}(R)})}$$

$$\cdot \prod_{i=1}^{\infty} \frac{(1 - Q_i^{i+1} Q_{2i}^{h_{jk}(R)}) (1 - Q_i^{i+1} Q_{2i}^{-h_{jk}(R)}) (1 - Q_i^{i-1} Q_{2i}^{h_{jk}(R)}) (1 - Q_i^{i-1} Q_{2i}^{-h_{jk}(R)})}{(1 - Q_i^{i} Q_{2i}^{h_{jk}(R)})^2 (1 - Q_i^{i} Q_{2i}^{-h_{jk}(R)})^2}$$

$$= Z_{\text{prod}} \cdot (-1)^R \cdot \prod_{j,k \in R}$$

$$\cdot \prod_{i=1}^{\infty} \frac{(1 - Q_i^{i-1} Q_{2i}^{h_{jk}(R)}) (1 - Q_i^{i-1} Q_{2i}^{-h_{jk}(R)}) (1 - Q_i^{i-1} Q_{2i}^{h_{jk}(R)}) (1 - Q_i^{i-1} Q_{2i}^{-h_{jk}(R)})}{(1 - Q_i^{i-1} Q_{2i}^{h_{jk}(R)}) (1 - Q_i^{i-1} Q_{2i}^{-h_{jk}(R)}) (1 - Q_i^{i} Q_{2i}^{h_{jk}(R)}) (1 - Q_i^{i} Q_{2i}^{-h_{jk}(R)})}$$

where we’ve defined

$$Z_{\text{prod}} = M(Q_1, p)^{-1} \prod_{i=1}^{\infty} \frac{M(Q_i Q_2^i, p)^2}{(1 - Q_i Q_2^i) M(Q_i^{-1} Q_2^i, p) M(Q_i^{-1} Q_2^{-i}, p)}$$
We now make the variable change given by equation (6), sum over the remaining partition, and write the result in terms of elliptic genera:

\[
\begin{align*}
Z'_{\text{ban}} &= Z_{\text{prod}} \cdot \sum_{R} (y^{-1}Q)^{R} \\
&\cdot \prod_{i=1}^{\infty} \prod_{j,k \in R} \frac{(1 - t^{h_{jk}}yq^{i-1})(1 - t^{-h_{jk}}yq^{i-1})(1 - t^{h_{jk}}y^{-1}q^{i})(1 - t^{-h_{jk}}y^{-1}q^{i})}{(1 - t^{h_{jk}}q^{i-1})(1 - t^{-h_{jk}}q^{i-1})(1 - t^{h_{jk}}q^{i})(1 - t^{-h_{jk}}q^{i})}
\end{align*}
\]

\[
= Z_{\text{prod}} \cdot \sum_{k=0}^{\infty} Q^{k} \text{Ell}_{q,y}((\mathbb{C}^{2})^{[k]}, t)
\]

\[
= Z_{\text{prod}} \cdot \prod_{n=0}^{\infty} \prod_{m=1}^{\infty} \prod_{l,k \in \mathbb{Z}} (1 - t^{k}q^{n}y^{l}Q^{m})^{-c(nm,l,k)}
\]

\[
= Z_{\text{prod}} \cdot \prod_{n=0}^{\infty} \prod_{m=1}^{\infty} \prod_{l,k \in \mathbb{Z}} (1 - t^{k}q^{n}y^{l}Q^{m})^{-c(4mn-l^{2},k)}
\]

where the last three equalities come from equation (1), Theorem 11, and Proposition 12 respectively.

Returning to the DT variables via

\[
t = p, \quad q = Q_{1}Q_{2}, \quad y = Q_{1}, \quad Q = Q_{1}Q_{3},
\]

reindexing by

\[
d_{1} = n + l + m, \quad d_{2} = n, \quad d_{3} = m,
\]

and observing that

\[
||d|| = 2d_{1}d_{2} + 2d_{2}d_{3} + 2d_{3}d_{1} - d_{1}^{2} - d_{2}^{2} - d_{3}^{2} = 4mn - l^{2}
\]

we find

\[
Z'_{\text{ban}} = Z_{\text{prod}} \cdot \prod_{d_{3}=1}^{\infty} \prod_{d_{2}=0}^{\infty} \prod_{d_{1} \in \mathbb{Z}} (1 - p^{k}Q_{1}^{d_{1}}Q_{2}^{d_{2}}Q_{3}^{d_{3}})^{-c(||d||,k)}
\]

Observing further that when \(d_{1} < 0\) and \(d_{3} > 0\), \(||d|| = 4d_{3}d_{1} - (d_{2} - d_{1} - d_{3})^{2} < -1\) and so \(c(||d||,k) = 0\), we get

\[
\hat{Z}(\hat{F}_{\text{ban}}) = M(p)^{2} \cdot Z'_{\text{ban}}
\]

\[
= M(p)^{2} \cdot Z_{\text{prod}} \cdot \prod_{d_{3}=1}^{\infty} \prod_{d_{2},d_{3}=0}^{\infty} \prod_{k \in \mathbb{Z}} (1 - p^{k}Q_{1}^{d_{1}}Q_{2}^{d_{2}}Q_{3}^{d_{3}})^{-c(||d||,k)}
\]
Finally we claim that

\[M(p)^2 \cdot Z_{\text{prod}} = \prod_{(\ast)} (1 - p^k Q_1^d_1 Q_2^d_2 Q_3^d_3)^{-c(||d||,k)} \]

where the product is over

\[(\ast) \quad d_3 = 0, \quad d_1, d_2 \geq 0, \quad \text{and} \quad \begin{cases} k \in \mathbb{Z} & (d_1, d_2) \neq (0, 0), \\ k > 0 & (d_1, d_2) = (0, 0). \end{cases} \]

Indeed, if \(d_3 = 0 \), then \(||d|| = -(d_2 - d_1)^2 \) and by Corollary 13 the product over \((\ast)\) reduces to the terms where

\[k \in \mathbb{Z}, \quad (d_1, d_2) = (d, d - 1), (d - 1, d), (d, d), \quad d > 1 \]

and the special case \(d_1 = d_2 = 0, k > 0 \). Applying Corollary 13 we easily deduce the above claim.

Substituting the claimed equation back into the previous equation for \(Z(\hat{F}_{\text{ban}}) \) then finishes the proof of Theorem 4. \(\square \)

5. Geometry of the Banana Manifold

In this section we compute the Hodge numbers of the banana manifold \(X_{\text{ban}} \), we show that the fiber classes are spanned by the banana curves \(C_1, C_2, C_3 \), and we prove Proposition 24 which describes the formal neighborhood of the singular fibers.

Let \(p : S \to \mathbb{P}^1 \) be a rational elliptic surface with 12 singular fibers, each having one node. Let \(p^* : S^* \to \mathbb{P}^1 \) be an isomorphic copy of \(S \) and consider the fibered product

\[X_{\text{sing}} = S \times_{\mathbb{P}^1} S^*. \]

\(X_{\text{sing}} \) is singular at the 12 points where both \(p \) and \(p^* \) are not smooth, namely at the product of the nodes. To see that these points are conifold singularities, note that for each node \(n \in S \), and corresponding node \(n^* \in S^* \), there exists formal local coordinates \((x, y), (x^*, y^*)\), \(t \) about \(n, n^* \), and \(p(n) = p^*(n^*) \in \mathbb{P}^1 \) respectively such that the maps \(p \) and \(p^* \) are given by \(xy = t \) and \(x^*y^* = t \). Consequently, \(xy = x^*y^* \) is the local equation of \(X_{\text{sing}} \) at \((n, n^*)\).

Let \(\Delta \subset X_{\text{sing}} \) be the divisor given by the diagonal in the fibered product. From the above local description of the singularities, all of which lie on \(\Delta \), we see that

\[X_{\text{ban}} = \text{Bl}_\Delta(X_{\text{sing}}), \]
the blowup of X_{sing} along the diagonal is smooth and

$$X_{\text{ban}} \to X_{\text{sing}}$$

is a conifold resolution.

5.1. Relation to the Schoen threefold and the Hodge numbers.

Lemma 27. $e(X_{\text{ban}}) = 24$.

Proof. Since the map $X_{\text{ban}} \to X_{\text{sing}}$ contracts 12 \mathbb{P}^1s to 12 singular points, we can write the following equation in the Grothendieck group of varieties,

$$[X_{\text{ban}}] = [X_{\text{sing}}^o] + 12[\mathbb{P}^1]$$

where $X_{\text{sing}}^o \subset X_{\text{sing}}$ is the non-singular locus. Since $e(\cdot)$ is a homomorphism from the Grothendieck group to the integers, we see that $e(X_{\text{ban}}) = e(X_{\text{sing}}^o) + 24$. We claim the Euler characteristic of the fibers of $X_{\text{sing}}^o \to \mathbb{P}^1$ are all zero. The smooth fibers are $E \times E$, a product of smooth elliptic curves and hence have zero Euler characteristic. The singular fibers have a $\mathbb{C}^* \times \mathbb{C}^*$ action constructed in §3.5. The fixed points of the action on the fibers of $X_{\text{sing}} \to \mathbb{P}^1$ are exactly the conifold points and so the action on the fibers of $X_{\text{sing}}^o \to \mathbb{P}^1$ is free. Consequently, the Euler characteristics of these fibers are zero. The lemma follows. □

The banana manifold is related to the Schoen Calabi-Yau threefold by a conifold transition. This will allow us to compute the Hodge numbers of the banana manifold in terms of the (well-known) Hodge numbers of the Schoen threefold. The Schoen threefold can be defined as

$$X_{\text{Sch}} \subset \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^1,$$

the intersection of two generic hypersurfaces of multi-degree $(3, 0, 1)$ and $(0, 3, 1)$. It is a simply connected Calabi-Yau threefold with $h^{1,1}(X_{\text{Sch}}) = 19$ and $h^{2,1}(X_{\text{Sch}}) = 19$.

Proposition 28. X_{ban} is a simply connected Calabi-Yau with $h^{2,1}(X_{\text{ban}}) = 8$ and $h^{1,1}(X_{\text{ban}}) = 20$.

Proof. We first show that there is a conifold transition from X_{Sch} to X_{ban}. The generic hypersurface in $\mathbb{P}^2 \times \mathbb{P}^1$ of degree $(3, 1)$ is a rational elliptic surface
$S \to \mathbb{P}^1$ and consequently the projections of $X_{\text{Sch}} \subset \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^1$ onto various subfactors realize X_{Sch} as a fibered product

$$X_{\text{Sch}} = S_0 \times_{\mathbb{P}^1} S_1$$

where $S_i \to \mathbb{P}^1$ are distinct generic rational surfaces. We may choose a 1-parameter family of elliptic surfaces S_t which interpolates between S_0 and S_1. Then the family of threefolds

$$X_t = S_0 \times_{\mathbb{P}^1} S_t$$

are all Schoen threefolds for $t \neq 0$ and $X_0 = X_{\text{sing}}$ and since $X_{\text{ban}} \to X_{\text{sing}}$ is a conifold resolution, we get a conifold transition $X_{\text{Sch}} \leadsto X_{\text{ban}}$. Since conifold transitions preserve simple connectivity and the Calabi-Yau condition, we see that X_{ban} is a simply connected Calabi-Yau threefold. The change in $h^{1,1}$ through a conifold transition is determined by the codimension of the family of singular threefolds inside the full deformation space of the threefold (see [31, § 3.1]). The family of Schoen threefolds is 19 dimensional: there are the two 8 dimensional families of rational elliptic surfaces $S_i \to \mathbb{P}^1$ and the three dimensional family of isomorphisms between the bases of $S_i \to \mathbb{P}^1$ required to form the fibered product $S_0 \times_{\mathbb{P}^1} S_1$. The locus of such fibered products with

$$\delta = 12$$

conifold singularities is 8 dimensional: the 12 nodes of S_0 and S_1 must occur over the same fibers which implies that $S_0 \cong S_1$ and the isomorphism of the base is the identity. The codimension σ is thus

$$\sigma = 19 - 8 = 11.$$

Following [31, § 3.1], we compute:

$$h^{1,1}(X_{\text{ban}}) = h^{1,1}(X_{\text{Sch}}) + \delta - \sigma$$

$$= 19 + 12 - 11 = 20.$$

Then since $e(X_{\text{ban}}) = 24 = 2(h^{1,1}(X_{\text{ban}}) - h^{2,1}(X_{\text{ban}}))$ we see that $h^{2,1}(X_{\text{ban}}) = 8$ (in particular, the 8 dimensional space of banana manifolds constructed above is the whole deformation space).

Lemma 29. Let C_1, C_2, C_3 be the banana curves in a singular fiber F_{sing}. Then \(\Gamma = \ker(\pi_* : H_2(X_{\text{ban}}, \mathbb{Z}) \to H_2(\mathbb{P}^1, \mathbb{Z})) \) is spanned by the classes of C_1, C_2, and C_3.

Proof. By the previous discussion of the conifold transition, we have that
\[H_2(X_{\text{ban}}, \mathbb{Z}) \cong H_2(X_{\text{Sch}}, \mathbb{Z}) \oplus \mathbb{Z} \]
where the \(\mathbb{Z} \) factor is spanned by the exceptional curves of the conifold resolution, in particular, the exceptional curves are all homologous. Let
\[p_1, p_2 : X_{\text{ban}} \to S \]
be the projections on to the first and second factors of the fibered product. Then
\[\Gamma = \text{Ker}(p_1)_* \cup \text{Ker}(p_2)_*. \]
This follows since if a connected algebraic 1-cycle in \(X_{\text{ban}} \) maps to a point in \(\mathbb{P}^1 \), then by properties of the fiber product, it either maps to a point under \(p_1 \) or \(p_2 \). Moreover, it is enough to consider algebraic cycles since \(H_2(X_{\text{ban}}, \mathbb{Z}) \cong H^4(X_{\text{ban}}, \mathbb{Z}) \subset H^{2,2}(X_{\text{ban}}) \) has no torsion and the Hodge conjecture holds for threefolds.

Let \(x_1, \ldots, x_{12} \in \mathbb{P}^1 \) be points corresponding to singular fibers and we label the banana curves \(C_1(i), C_2(i), C_3(i) \) in the singular fiber over \(x_i \) such that \(C_3(i) \) is an exceptional curve for the conifold resolution and \(C_1(i) \) and \(C_2(i) \) are such that
\[p_j^{-1}(p_j(C_3(i))) = C_j(i) \cup C_3(i), \quad j = 1, 2. \]
The fibers of \(p_j : X_{\text{ban}} \to S \) are all irreducible except for the fibers \(C_j(i) \cup C_3(i) \) for \(i = 1, \ldots, 12 \). Since the exceptional curves are all homologous, we have a single class \(C_3 = C_3(i) \) for all \(i \) and since the fibers of \(p_j \) are all homologous we get
\[C_1(i) + C_3 = C_1(i') + C_3, \quad \text{and} \quad C_2(i) + C_3 = C_2(i') + C_3. \]
Hence we all \(C_1(i) \) are homologous to a single class \(C_1 \) and all \(C_2(i) \) are homologous to a single class \(C_2 \) and \(\Gamma \) is spanned by \(C_1, C_2, C_3 \).

5.2. Proof of Proposition 24. Let \(C_{\text{sing}} \subset S \) be a singular fiber of \(S \to \mathbb{P}^1 \) and let \(C_{\text{sing}}^\# \subset S^\# \) be an isomorphic copy so that
\[X_{\text{sing}} = S \times_{\mathbb{P}^1} S^\# \quad \text{and} \quad F_{\text{sing}} = C_{\text{sing}} \times C_{\text{sing}}^\#. \]
\(C_{\text{sing}} \) is a nodal rational curve whose normalization \(\mathbb{P}^1 \to C_{\text{sing}} \) identifies the points \(0, \infty \in \mathbb{P}^1 \) to the nodal point \(n \in C_{\text{sing}} \). Thus \(F_{\text{sing}}^{\text{norm}} \) is isomorphic to
$\mathbb{P}^1 \times \mathbb{P}^1$ and the map $F_{\text{sing}}^{\text{norm}} \to F_{\text{sing}}$ identifies $0 \times \mathbb{P}^1$ and $\infty \times \mathbb{P}^1$ to $n \times C_{\text{sing}}^\#$ and identifies $\mathbb{P}^1 \times 0$ and $\mathbb{P}^1 \times \infty$ to $C_{\text{sing}} \times n^\#$. Note that this map is $\mathbb{C}^* \times \mathbb{C}^*$ equivariant with respect to the usual toric action on $\mathbb{P}^1 \times \mathbb{P}^1$ and our constructed action on F_{sing}.

The formal neighborhood \hat{F}_{ban} is obtained from \hat{F}_{sing} by blowing up the diagonal $\Delta \subset \hat{F}_{\text{sing}}$. The blow down $\hat{F}_{\text{ban}} \to \hat{F}_{\text{sing}}$ contracts the exceptional \mathbb{P}^1 to the conifold point $n \times n^#$ and is an isomorphism elsewhere. We study this blowup and the normalizations in formal local coordinates about $n \times n^#$:

Let (x, y) and $(x^#, y^#)$ be formal local coordinates on S and $S^#$ about the points n and $n^#$ such that the maps $S \to \mathbb{P}^1$ and $S^# \to \mathbb{P}^1$ are given by $t = xy$ and $t = x^#y^#$ where t is a formal local coordinate on \mathbb{P}^1. Moreover, we may choose the coordinates so that the action of $(\lambda, \lambda^#) \in \mathbb{C}^* \times \mathbb{C}^*$ on \hat{F}_{sing} is given by

$$(x, y, x^#, y^#) \mapsto (\lambda x, \lambda^{-1} y, \lambda^# x^#, (\lambda^#)^{-1} y^#).$$

Then the formal neighborhood of $n \times n^# \in \hat{F}_{\text{sing}}$ is isomorphic to

$$\{xy = x^#y^#\} \subset \text{Spec} \mathbb{C}[[x, y, x^#, y^#]]$$

where the closed fiber $F_{\text{sing}} \subset \hat{F}_{\text{sing}}$ is given by

$$\{xy = x^#y^# = 0\}.$$

The blowup of \hat{F}_{sing} along the diagonal $\Delta = \{x = x^#, y = y^#\}$ is canonically isomorphic to the blowup along any of the planes11

$$\{ax = a^#x^#, a^#y = ay^#\}, \quad (a : a^#) \in \mathbb{P}^1.$$

Choosing $(a : a^#) = (1 : 0)$, we get two affine toric charts for the blow up with coordinate rings given by

$$\mathbb{C}[[x, x^#, y, y^#]][u]/(x - uy^#, x^# - uy) \cong \mathbb{C}[[y, y^#]][u],$$

$$\mathbb{C}[[x, x^#, y, y^#]][v]/(y - vx^#, y^# - vx) \cong \mathbb{C}[[x, x^#]][v].$$

The coordinate change between the charts is given by

$$u = v^{-1}, \quad y = vx^#, \quad y^# = vx$$

11There are canonically two small resolutions of the conifold singularity $xy = x^#y^#$. These two are given by blowing up any plane given by affine cone over a line in one of the two rulings of the quadric surface $\{xy = x^#y^#\} \subset \mathbb{P}^3$.

and the induced \((\lambda, \lambda^\#)\) action is given by

\[(\lambda x, \lambda^\# x^\#, (\lambda \lambda^\#)^{-1} v), \quad (\lambda^{-1} y, (\lambda^\#)^{-1} y^\#, \lambda \lambda^\# u).\]

The coordinates on the blowup of the formal neighborhood of \(n \times n^\# \in \hat{F}_{\text{sing}}\)
and the corresponding blowdown are encoded in the following momentum “polytopes” where the coordinate lines are labelled by their corresponding variables:

The \(x\) and \(y\) coordinates about \(n \in S\) (which correspond to the two branches of
the node in \(C_{\text{sing}}\)) become local coordinates near \(0\) and \(\infty\) in \(\mathbb{P}^1\), the normalization
of \(C_{\text{sing}}\).

Thus \(F^n_{\text{sing}}\) and \(F^n_{\text{ban}}\), when endowed with local coordinate rings given by
\(\sigma^* \hat{O}_{\hat{F}_{\text{sing}}}\) and \(\tau^* \hat{O}_{\hat{F}_{\text{ban}}}\) respectively, have momentum polytopes given by:
We see that
\[F_{\text{Ban}}^{\text{norm}} \cong \text{Bl}_{(0,0)}(\infty,\infty)((\mathbb{P}^1 \times \mathbb{P}^1), \quad \hat{F}_{\text{Ban}}^{\text{norm}} \cong \text{Bl}(\mathbb{P}^1 \times \mathbb{P}^1) \]
as asserted.

6. BPS INVARIANTS FROM A DONALDSON-THOMAS PARTITION FUNCTION IN PRODUCT FORM.

The Gopakumar-Vafa invariants (a.k.a. BPS invariants) \(n^3_\beta(X) \) can be defined in terms of Gromov-Witten or Donaldson-Thomas invariants and (conjecturally) have better finiteness properties. Unlike the Donaldson-Thomas invariants, it is expected that there are only a finite number of non-zero Gopakumar-Vafa invariants for each curve class \(\beta \).

One definition of Gopakumar-Vafa invariants, which is equivalent to the usual one given in terms of Gromov-Witten invariants via the Gopakumar-Vafa formula, is the following:

Definition-Theorem 30. Let \(X \) be any Calabi-Yau threefold and suppose that the Donaldson-Thomas partition function is given by

\[
Z(X) = \prod_{\beta \in H_2(X)} \prod_{k \in \mathbb{Z}} (1 - p^k Q^\beta)^{-a(\beta,k)}
\]
for some integers \(a(\beta, k) \in \mathbb{Z} \). Then for \(\beta \neq 0 \in H_2(X) \) and \(g \in \mathbb{Z} \) the Gopakumar-Vafa invariants \(n^g_\beta(X) \) can be defined by the formula

\[
\sum_g n^g_\beta(X) \left(y^{\frac{1}{2}} + y^{-\frac{1}{2}} \right)^{2g} = \left(y^{\frac{1}{2}} + y^{-\frac{1}{2}} \right)^2 \sum_{k \in \mathbb{Z}} a(\beta, k) (-y)^k.
\]

This is equivalent, assuming the Gromov-Witten/Donaldson-Thomas correspondence, to defining \(n^g_\beta(X) \) in terms of the Gromov-Witten invariants via the Gopakumar-Vafa formula.

Remark 31. It is expected that \(n^g_\beta(X) \) is zero unless \(0 \leq g \leq g_{\text{max}} \) where \(g_{\text{max}} \) is the maximal arithmetic genus of curves in the class \(\beta \). Note that the left hand side of the above formula is a palindromic polynomial in \(y \) (i.e. invariant under \(y \leftrightarrow y^{-1} \)). One can see that the invariants \(n^g_\beta(X) \) are well-defined by the above definition as follows. Any power series \(Z \in \mathbb{Z}((p))[[Q]] \) can be uniquely written in the form of equation (15) for some collection of integers \(a(\beta, k) \). By a theorem of Bridgeland [9], the right hand side of equation (15) is a rational function of \(y \), invariant under \(y \leftrightarrow y^{-1} \), possibly having poles at \(y = -1 \). Such functions have a basis given by the functions

\[
\left(y^{\frac{1}{2}} + y^{-\frac{1}{2}} \right)^{2g} = y^{-g} (1 + y)^{2g}, \quad g \in \mathbb{Z}
\]

and so the left hand side of (15) is well defined and uniquely determines \(n^g_\beta(X) \). The conjecture that \(n^g_\beta(X) = 0 \) if \(g < 0 \) is equivalent to the right hand side of (15) not having a pole.

Proof. The Gopakumar-Vafa formula [18] expresses the reduced Gromov-Witten potential function \(F'(X) \) of a Calabi-Yau threefold \(X \) in terms of conjecturally integer invariants \(n^g_\beta(X) \), which are commonly called Gopakumar-Vafa invariants, or BPS invariants:

\[
F'(X) = \sum_{g \geq 0} \sum_{\beta \neq 0} GW^g_\beta(X) \lambda^{2g-2} Q^\beta = \sum_{g \geq 0} \sum_{\beta \neq 0} \sum_{m > 0} n^g_\beta(X) \frac{1}{m} \left(2 \sin \frac{m \lambda}{2} \right)^{2g-2} Q^m \beta.
\]

One can re-express the above formula in terms of the partition function \(Z'(X) = \exp (F'(X)) \) as follows\(^{12}\):

\[
Z'(X) = \prod_{\beta \neq 0} \prod_{m \in \mathbb{Z}} \left(1 - Q^\beta p^m \right)^{-\sum_{g \geq 0} n^g_\beta(X) \left(2g-2 \right) \left(-1 \right)^m}
\]

\(^{12}\)This expression essentially appears in [25, eqn 18], although our convention for \(\binom{n}{k} \) allows us to write the formula more uniformly.
where \(p = \exp (i \lambda) \) and \(\binom{n}{k} = \frac{n(n-1)\ldots(n-k+1)}{k!} \) is defined for all \(k \geq 0 \) and \(n \in \mathbb{Z} \).

The Donaldson-Thomas partition function can always be written in the following form
\[
Z(X) = \prod_\beta \prod_{m \in \mathbb{Z}} (1 - Q^\beta p^m)^{-c(\beta, m)}
\]
for some \(c(\beta, m) \in \mathbb{Z} \). Then for \(\beta \neq 0 \),
\[
c(\beta, m) = \sum_{n=0}^\beta n^g_\beta (X) \left(\frac{2g-2}{g-1-m} \right) (-1)^m.
\]

The Definition-Theorem is then an easy consequence of the binomial theorem. □

APPENDIX A. THE GROMOV-WITTEN POTENTIALS ARE SIEGEL MODULAR FORMS (WITH STEPHEN PIETROMONACO)

A.1. Overview. Let \(F_g(Q_1, Q_2, Q_3) \) be the genus \(g \geq 2 \) Gromov-Witten potential for fiber classes in \(X_{\text{ban}} \). Namely, let
\[
F_g(Q_1, Q_2, Q_3) = \sum_{d_1, d_2, d_3 \geq 0} GW^g_d(X_{\text{ban}}) Q_1^{d_1} Q_2^{d_2} Q_3^{d_3}
\]
where \(GW^g_d(X_{\text{ban}}) \) is the genus \(g \) Gromov-Witten invariant of \(X_{\text{ban}} \) in the class \(\beta_d = d_1 C_1 + d_2 C_2 + d_3 C_3 \).

Assuming that the Gromov-Witten/Donaldson-Thomas correspondence conjectured in [29] holds, we may compute \(F_g(Q_1, Q_2, Q_3) \) using the formula for the Donaldson-Thomas partition function derived in the main text. The main result of this appendix is that \(F_g \) is an explicit genus 2 Siegel modular form of weight \(2g - 2 \).

Definition 32. Let \(\Omega = (\tau \ z \ s) \in \mathbb{H}_2 \) be the standard coordinates on the genus 2 Siegel upper half plane. A holomorphic (resp. meromorphic) genus 2 Siegel modular form of weight \(k \) is a holomorphic (resp. meromorphic) function \(F(\Omega) \) satisfying
\[
F \left((A \Omega + B)(C \Omega + D)^{-1} \right) = \det \left((C \Omega + D)^k \right) F(\Omega)
\]
for all \((A \ B) \in Sp_4(\mathbb{Z}) \) (c.f. [17]). We denote the space of meromorphic genus 2 Siegel forms of weight \(k \) by \(\text{Siegel}_k \).
As we will detail in § A.2, a standard way to construct a genus 2 Siegel modular form of weight $2g - 2$ is to take the so-called Maass lift of a Jacobi form of weight $2g - 2$ and index 1. Moreover, such Jacobi forms are easily obtained by taking a modular form of weight $2g$ and multiplying it by $\phi_{-2,1}$, the unique weak Jacobi form of weight -2 and index 1. Some authors call this the Skoruppa lift of the modular form. Schematically we have

$$\text{Mod}_{2g} \xrightarrow{\text{Skoruppa}} \text{Jac}_{2g-2,1} \xrightarrow{\text{Maass}} \text{Siegel}_{2g-2}$$

We call the composition the Skoruppa-Maass lift. It takes weight $2g$ modular forms to genus 2, weight $2g - 2$, Siegel modular forms13. Our main result is:

Theorem 33. Assume that the Gromov-Witten/Donaldson-Thomas correspondence holds for X_{ban}. Then for $g \geq 2$, the genus g Gromov-Witten potentials $F_g(Q_1, Q_2, Q_3)$ of X_{ban} are meromorphic genus 2 Siegel modular forms of weight $2g - 2$ where

$$Q_1 = e^{2\pi i z}, \quad Q_2 = e^{2\pi i (\tau - z)}, \quad Q_3 = e^{2\pi i (\sigma - z)}.$$

Specifically, F_g is the Skoruppa-Maass lift of $a_g E_{2g}(\tau)$, the $2g$-th Eisenstein series times the constant $a_g = \frac{6|B_{2g}|}{g(2g-2)!}$ where B_{2g} is the $2g$-th Bernoulli number.

The ring of holomorphic, even weight, genus 2 Siegel modular forms is a polynomial ring generated by the Igusa cusp forms χ_{10} and χ_{12} of weight 10 and 12, and the Siegel Eisenstein series E_4 and E_6 of weight 4 and 6 [21, 22]. Although F_g are meromorphic, the denominators can be determined explicitly:

Corollary 34. For $g \geq 2$, the product $\chi_{10}^{g-1} \cdot F_g$ is a holomorphic Siegel form of weight $12g - 12$.

13This lift is different from the famous Saito-Kurokawa lift which also takes Mod_{2g} to Siegel_{2g-2}. While both use the Maass lift, the Saito-Kurokawa lift uses a combination of the Shimura correspondence and a lift studied by Eichler-Zagier to go from Mod_{2g} to $\text{Jac}_{2g-2,1}$ [17].
This corollary follows from Aoki’s proof of [2, Thm 14]. In terms of the generators \(\chi_{10}, \chi_{12}, E_4, E_6 \), the first few potentials are given explicitly as

\[
F_2 = \frac{1}{240} \left(\frac{\chi_{12}}{\chi_{10}} \right),
\]

\[
F_3 = \frac{-1}{60480} \left(6E_4 - 5 \left(\frac{\chi_{12}}{\chi_{10}} \right)^2 \right),
\]

\[
F_4 = \frac{1}{3628800} \left(\frac{35}{2} \left(\frac{\chi_{12}}{\chi_{10}} \right)^3 - \frac{63}{2} \left(\frac{\chi_{12}}{\chi_{10}} \right) E_4 + 15 E_6 \right),
\]

\[
F_5 = \frac{-1}{106444800} \left(\frac{-175}{3} \left(\frac{\chi_{12}}{\chi_{10}} \right)^4 + 140 \left(\frac{\chi_{12}}{\chi_{10}} \right)^2 \right) E_4 - \frac{200}{3} \left(\frac{\chi_{12}}{\chi_{10}} \right) E_6 - 14 E_4^2 \right).
\]

Note that the prefactor is given by

\[
F_g(0, 0, 0) = \frac{12B_{2g-2}|B_{2g}|}{g(4g-4)(2g-2)!},
\]

the degree 0 genus \(g \) Gromov-Witten invariant of \(X_{\text{ban}} \). See [37] for details of this computation.

Remark 35. Theorem 33 has a nice interpretation in terms of mirror symmetry. The Gromov-Witten potentials are functions of local coordinates on the Kähler moduli space. Under mirror symmetry, these become coordinates on the complex moduli space of the mirror. Since the arguments of a genus 2 Siegel modular form are coordinates on the moduli space of genus 2 curves (or Abelian surfaces), we expect the complex moduli space of \(\tilde{X}_{\text{ban}} \), the mirror of the banana manifold, to contain a subspace isomorphic to the moduli space of genus 2 curves. Indeed, it has already been observed that the mirror of a local banana configuration should be a genus 2 curve [1, 19, 39].

Remark 36. We also determine the genus 0 and genus 1 potentials. Up to degree 0 terms (which are unstable for \(g = 0 \) or \(g = 1 \)), \(F_0 \) is the Skoruppa-Maass lift of the constant 12 (viewed as a weight 0 modular form) and \(F_1 \) is the Maass lift of \(12\wp \cdot \phi_{-2,1} \) where \(\wp \) is the Weierstrass \(\wp \)-function. \(^{14}\)

\(^{14}\)Interestingly, the Jacobi form \(\phi_{0,1} = 12\wp \cdot \phi_{-2,1} \) is also equal to \(\frac{1}{2} \text{Ell}(K3) \).
A.2. Modular forms and lifts.

Definition 37. A weight k modular form is a holomorphic function $f(\tau)$ on $\mathbb{H} = \{ \tau \in \mathbb{C}, \text{Im} \tau > 0 \}$ satisfying

- For all \((a \ b
\begin{array}{c}
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\end{array}
\) \in SL_2(\mathbb{Z})

\[
 f \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^k f(\tau),
\]

- $f(\tau)$ admits a Fourier series of the form

\[
 f(\tau) = \sum_{n=0}^{\infty} a_n q^n, \quad q = e^{2\pi i \tau}.
\]

We denote the space of weight k modular forms by Mod_k. We sometimes abuse notation by writing $f(q)$ for the Fourier expansion of $f(\tau)$.

The $2g$-th Eisenstein series is given by

\[
 E_{2g}(q) = 1 - \frac{4g}{B_{2g}} \sum_{n=1}^{\infty} \sum_{d|n} d^{2g-1} q^n
\]

where B_{2g} is the $2g$-th Bernoulli number. E_{2g} is a modular form of weight $2g$ for all $g \geq 2$.

Definition 38. A weak Jacobi form of weight k and index m is a holomorphic function $\phi(\tau, z)$ on $\mathbb{H} \times \mathbb{C}$ satisfying

- For all \((a \ b
\begin{array}{c}
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\end{array}
\) \in SL_2(\mathbb{Z})

\[
 \phi \left(\frac{a\tau + b}{c\tau + d}, \frac{z}{c\tau + d} \right) = (c\tau + d)^k e^{\frac{2\pi imz^2}{c\tau + d}} \phi(\tau, z),
\]

- for all $u, v \in \mathbb{Z}$,

\[
 \phi(\tau, z + u\tau + v) = e^{-2\pi im(u^2 + 2zu)} \phi(\tau, z),
\]

- and ϕ admits a Fourier expansion of the form

\[
 \phi(\tau, z) = \sum_{n=0}^{\infty} \sum_{l \in \mathbb{Z}} c_\phi(n, l) q^n y^l
\]

where $q = e^{2\pi i \tau}$ and $y = e^{2\pi iz}$.
In the case of index \(m = 1 \), the Fourier coefficients \(c_\phi(n, l) \) only depend on \(4n - l^2 \) and so we will sometimes in this case write

\[
c_\phi(4n - l^2) = c_\phi(n, l).
\]

We denote the space of weak Jacobi forms of weight \(k \) and index \(m \) by \(\text{Jac}_{k,m} \). We sometimes abuse notation by writing \(\phi(q, y) \) for the Fourier expansion of \(\phi(\tau, z) \). A basic example is given by \(\phi_{-2,1} \) whose Fourier expansion is given by

\[
\phi_{-2,1}(q, y) = y^{-1}(1 - y)^2 \prod_{n=1}^{\infty} \frac{(1 - yq^n)^2(1 - 1/yq^n)^2}{(1 - q^n)^4}.
\]

Up to a multiplicative constant, \(\phi_{-2,1} \) is the unique weak Jacobi form of weight -2 and index 1. We also will use the Weierstrass \(\wp \)-function:

\[
\wp(q, y) = \frac{1}{12} + \frac{y}{(1 - y)^2} + \sum_{n=1}^{\infty} \sum_{d|n} d(y^d + y^{-d} - 2)q^n
\]

and we note that up to a multiplicative constant

\[
\phi_{0,1} = 12 \cdot \phi_{-2,1} \cdot \wp
\]

is the unique weak Jacobi form of weight 0 and index 1.

The product of a weak Jacobi form of weight \(k \) and index \(m \) with a modular form of weight \(n \) is a weak Jacobi form of \(k + n \) and index \(m \). In particular, multiplication by \(\phi_{-2,1} \) defines a map which we call the Skoruppa lift:

\[
\text{Mod}_{2g} \xrightarrow{\text{Skoruppa}} \text{Jac}_{2g-2,1}.
\]

Definition 39. Let \(k \) be even. For \(m \) a non-negative integer, the \(m \)-th Hecke operator

\[
V_m : \text{Jac}_{k,1} \to \text{Jac}_{k,m}
\]

is given by taking

\[
\phi(q, y) = \sum_{n=0}^{\infty} \sum_{l \in \mathbb{Z}} c_\phi(n, l)q^n y^l
\]

to

\[
(\phi | V_m) = \sum_{n=0}^{\infty} \sum_{r \in \mathbb{Z}} \sum_{d|n, r, m} d^{k-1}c_\phi \left(\frac{nm}{d^2}, \frac{r}{d} \right) q^n y^r
\]
for $m > 0$ and

$$
(\phi|V_0) = c_\phi(0,0) \frac{-B_k}{2k} + \sum_{n=0}^{\infty} \sum_{r \in \mathbb{Z} \atop r > 0 \text{ if } n=0} \sum_{d \mid (n,r)} d_{(n,r)} d^{k-1} c_\phi \left(0, \frac{r}{d}\right) q^n y^r
$$

for $m = 0$.

Definition 40. Let $\phi \in \text{Jac}_{k,1}$ with k even. The Maass lift of ϕ is given by

$$
ML(\phi) = \sum_{m=0}^{\infty} (\phi|V_m) Q^m.
$$

The following is due to Eichler-Zagier [17] in the case of holomorphic Jacobi forms, and Borcherds [6, Thm 9.3] and Aoki [2] in the case of weak Jacobi forms:15

Theorem 41. The Maass lift of a weak Jacobi form of weight $k > 0$ and index 1 is a meromorphic genus 2 Siegel modular form of weight k. If the Jacobi form is holomorphic, then the Maass lift is also holomorphic. Here $Q = e^{2\pi i \sigma}$, $q = e^{2\pi i \tau}$, and $y = e^{2\pi i z}$ where $(\tau \ z) \in \mathbb{H}_2$.

We may reformulate the Maass lift in terms of polylogarithms. Let

$$
\text{Li}_a(x) = \sum_{n=1}^{\infty} n^{-a} x^n.
$$

Then a straightforward computation yields the following

Lemma 42. Let $\phi = \sum_{n=0}^{\infty} \sum_{l \in \mathbb{Z}} c_\phi(4n - l^2) q^n y^l \in \text{Jac}_{k,1}$ with k even. Then

$$
ML(\phi) = c_\phi(0) \frac{-B_k}{2k} + \sum_{n,m \geq 0} \sum_{l > 0 \text{ if } (n,m) = (0,0)} c_\phi(4nm - l^2) \text{Li}_{1-k}(Q^m q^n y^l).
$$

A.3. **The λ expansion of $\text{Ell}_{q,y}(\mathbb{C}^2, t)$**. Recall from §2 that the coefficients $c(d, k)$ are defined by the expansion of the equivariant elliptic genus of \mathbb{C}^2: 15

$$
\text{Ell}_{q,y}(\mathbb{C}^2, t) = \sum_{n=0}^{\infty} \sum_{l,k \in \mathbb{Z}} c(4n - l^2, k) q^n y^l t^k.
$$
Let $t = e^{i\lambda}$. Theorem 4.4 in Zhou [42] gives the expansion of $\text{Ell}_{q,y}(\mathbb{C}^2, t)$ as a Laurent series in λ. His result is

$$\text{Ell}_{q,y}(\mathbb{C}^2, e^{i\lambda}) = \lambda^{-2} \phi_{-2,1}(q, y) \cdot \left(1 + \varphi(q, y) \lambda^2 + \sum_{g=2}^{\infty} \frac{|B_{2g}|}{2g(2g-2)!} E_{2g}(q) \lambda^{2g} \right).$$

Let

$$\psi_{2g-2}(q, y) = \text{Coef}_{\lambda^{2g-2}} \left[\text{Ell}_{q,y}(\mathbb{C}^2, e^{i\lambda}) \right]$$

so that Zhou’s result can be expressed as

$$\psi_{2g-2}(q, y) = \phi_{-2,1}(q, y) \cdot \begin{cases} 1 & g = 0 \\ \varphi(q, y) & g = 1 \\ \frac{|B_{2g}|}{2g(2g-2)!} E_{2g}(q) & g > 1 \end{cases}$$

We observe that ψ_{2g-2} is a weak Jacobi form of weight $2g-2$ and index 1 and consequently has an expansion

$$\psi_{2g-2}(q, y) = \sum_{n=0}^{\infty} \sum_{l \in \mathbb{Z}} c_{2g-2}(4n - l^2) q^n y^l,$$

which defines the coefficients $c_{2g-2}(d)$.

Comparing coefficients in the λ and the t expansions of $\text{Ell}_{q,y}(\mathbb{C}^2, t = e^{i\lambda})$ we get the following fundamental relationship between the coefficients $c_{2g-2}(d)$ and $c(d, l)$:

$$\sum_{g=0}^{\infty} c_{2g-2}(d) \lambda^{2g-2} = \sum_{l \in \mathbb{Z}} c(d, l) e^{il\lambda}. \quad (16)$$

A.4. Gromov-Witten potentials via the GW/DT correspondence.

The GW/DT correspondence is a conjectural equivalence between the Gromov-Witten and the Donaldson-Thomas invariants of a Calabi-Yau threefold [29]. It has been proven for a broad class of Calabi-Yau threefolds including complete intersections in products of projective spaces [35], which unfortunately does not include X_{ban}.

However, if we assume that the GW/DT correspondence holds for X_{ban}, we may compute the genus g Gromov-Witten potentials from our formula for the
Donaldson-Thomas partition function (Theorem 4). We define the reduced genus g Gromov-Witten potential (for banana curve classes) of X_{ban} by

$$F'_g(Q_1, Q_2, Q_3) = \sum_{d > 0} GW^g_d(X_{\text{ban}}) Q_1^{d_1} Q_2^{d_2} Q_3^{d_3}.$$

Here $GW^g_d(X_{\text{ban}})$ denotes the genus g Gromov-Witten invariant in the class $\beta_d = d_1 C_1 + d_2 C_2 + d_3 C_3$ and $d > 0$ means $d_i \geq 0$ and $(d_1, d_2, d_3) \neq (0, 0, 0)$. The GW/DT correspondence asserts that

$$\sum_{g=0}^{\infty} F'_g(Q_1, Q_2, Q_3) \lambda^{2g-2} = \log \left(\frac{\prod \prod_{k \in \mathbb{Z}} (1 - p^{nk} Q_1^{d_1} Q_2^{d_2} Q_3^{d_3})^{-12c(||d||, k)}}{Z_\Gamma(X_{\text{ban}})|_{Q_i=0}} \right)$$

under the change of variables $p = e^{i\lambda}$.

We now prove Theorem 33. Applying Theorem 4 and using Equation (16), we get

$$\sum_{g=0}^{\infty} F'_g(Q_1, Q_2, Q_3) \lambda^{2g-2} = \log \left(\prod_{d > 0} \prod_{k \in \mathbb{Z}} (1 - p^{nk} Q_1^{d_1} Q_2^{d_2} Q_3^{d_3})^{-12c(||d||, k)} \right)$$

$$= \sum_{d > 0} \sum_{k \in \mathbb{Z}} 12c(||d||, k) \sum_{n=1}^{\infty} \frac{1}{n} p^{nk} Q_1^{d_1} Q_2^{d_2} Q_3^{d_3}$$

$$= 12 \sum_{d > 0} \sum_{n=1}^{\infty} \frac{1}{n} Q_1^{d_1} Q_2^{d_2} Q_3^{d_3} \sum_{g=0}^{\infty} c_{2g-2}(||d||) n^{2g-2} \lambda^{2g-2}.$$

Thus we find that

$$F'_g(Q_1, Q_2, Q_3) = 12 \sum_{d > 0} c_{2g-2}(||d||) \sum_{n=1}^{\infty} n^{2g-3} Q_1^{d_1} Q_2^{d_2} Q_3^{d_3}$$

$$= 12 \sum_{d > 0} c_{2g-2}(||d||) \text{Li}_{3-2g}(Q_1^{d_1} Q_2^{d_2} Q_3^{d_3}).$$

Substituting

$$Q_1 = e^{2\pi i z} = y, \quad Q_2 = e^{2\pi i (\tau - z)} = qy^{-1}, \quad Q_3 = e^{2\pi i (\sigma - z)} = Qy^{-1},$$

reindexing by

$$d_1 = l + n + m, \quad d_2 = n, \quad d_3 = m,$$
so that \(||d|| = 4nm - l^2 \), and noting that \(d > 0 \) is equivalent to \(n, m \geq 0, l \in \mathbb{Z} \) and \(l > 0 \) if \(n = m = 0 \), we find that

\[
F'_g(q, y, Q) = 12 \sum_{n, m \geq 0} \sum_{l \in \mathbb{Z} \atop l > 0 \text{ if } (n, m) = (0, 0)} c_{2g-2}(4nm - l^2) \text{Li}_{3-2g}(Q^m q^n y^l).
\]

For \(g > 1 \), the full genus \(g \) Gromov-Witten potential is the reduced potential plus the constant term:

\[
F_g = GW^g_{0}(X_{\text{ban}}) + F'_g.
\]

Using for example the formulas in [29, § 2.1] we know

\[
GW^g_{0}(X_{\text{ban}}) = (-1)^g \frac{1}{2} e(X_{\text{ban}}) \frac{|B_{2g}| \cdot |B_{2g-2}|}{2g(2g-2)(2g)!} = 12 \cdot \left(\frac{-B_{2g-2}}{4g - 4} \right) \cdot \left(\frac{-|B_{2g}|}{g(2g-2)!} \right).
\]

Examining the \(y^0 q^0 \) term of \(\psi_{2g-2}(q, y) = \phi_{-2, 1} \cdot \frac{|B_{2g}|}{2g(2g-2)!} E_{2g} \) for \(g > 1 \) yields

\[
c_{2g-2}(0) = \frac{-|B_{2g}|}{g(2g-2)!}.
\]

and hence we find

\[
F_g = 12 \cdot \left(c_{2g-2}(0) \frac{-B_{2g-2}}{4g - 4} + \sum_{n, m \geq 0} \sum_{l \in \mathbb{Z} \atop l > 0 \text{ if } (n, m) = (0, 0)} c_{2g-2}(4nm - l^2) \text{Li}_{3-2g}(Q^m q^n y^l) \right).
\]

By Lemma 42, the above is exactly the Maass lift of \(12 \psi_{2g-2} \), and hence we find that \(F_g \) is the Skoruppa-Maass lift of \(a_g E_{2g} \) where

\[
a_g = \frac{6|B_{2g}|}{g(2g-2)!}.
\]

This completes the proof of Theorem 33.

Remark 43. Note that the proof of the theorem also shows that up to constant terms, the genus 0 and the genus 1 Gromov-Witten potentials are given by the Maass lifts of \(12 \phi_{-2, 1} \) and \(12 \phi_{-2, 1} \varphi = \phi_{0, 1} \) respectively. Although these are weak Jacobi forms of index 1, they are not of positive weight, and hence their Maass lifts are not guaranteed to be Siegel forms. See [37] for a further discussion.
A.5. **Gopakumar-Vafa invariants.** In this section we give tables of values of the Gopakumar-Vafa invariants $n_g^a(X_{ban})$ for small values of g and a. Since all values are divisible by 12, we list $\frac{1}{12} n_g^a(X_{ban})$ (which can also be regarded as the Gopakumar-Vafa invariants of a local banana configuration). We note that the non-zero values have a congruent to 0 or -1 modulo 4 and so we organize the tables as such.

<table>
<thead>
<tr>
<th>$\frac{1}{12} n_{4n-1}^g(X_{ban})$</th>
<th>$g = 0$</th>
<th>$g = 1$</th>
<th>$g = 2$</th>
<th>$g = 3$</th>
<th>$g = 4$</th>
<th>$g = 5$</th>
<th>$g = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>8</td>
<td>-6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>39</td>
<td>-46</td>
<td>17</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>152</td>
<td>-242</td>
<td>139</td>
<td>-34</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>513</td>
<td>-1024</td>
<td>800</td>
<td>-304</td>
<td>56</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>1560</td>
<td>-3730</td>
<td>3683</td>
<td>-1912</td>
<td>548</td>
<td>-82</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{1}{12} n_{4n}^g(X_{ban})$</th>
<th>$g = 0$</th>
<th>$g = 1$</th>
<th>$g = 2$</th>
<th>$g = 3$</th>
<th>$g = 4$</th>
<th>$g = 5$</th>
<th>$g = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 1$</td>
<td>-12</td>
<td>10</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>-56</td>
<td>72</td>
<td>-30</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>-208</td>
<td>352</td>
<td>-220</td>
<td>60</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>-684</td>
<td>1434</td>
<td>-1194</td>
<td>492</td>
<td>-100</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>-2032</td>
<td>5056</td>
<td>-5252</td>
<td>2908</td>
<td>-902</td>
<td>148</td>
<td>-10</td>
</tr>
</tbody>
</table>

REFERENCES

