Quiz 3 math 200-106

Let \(f(x, y) = (y - x^2)(y - 1) \)

1. Find all Critical Points
2. Classify each critical point as either a local maximum, a local minimum, a saddle point, or not an ordinary critical point.
3. Find the coordinates of the points where \(f \) is maximum and where \(f \) is minimum subject to the constraint \(x^2 + y^2 = 2 \).
4. Find the coordinates of the maximum and minimum of \(f \) on the domain \(\mathcal{D}(x, y) \) \(x^2 + y^2 \leq 2 \).
5. Sketch the contour plot of \(f(x, y) \).

 Hint: Start by drawing the contour \(f(x, y) = 0 \).

 Make sure your sketch is consistent with your answers for parts 1 - 4.
Solutions

\[f(x,y) = (y-x^2)(y-1) \]

\[f_x = -2x(y-1) = 0 \quad \text{(i)} \]
\[f_y = (y-1) + (y-x^2) = 2y-1-x^2 = 0 \quad \text{(ii)} \]

\[\Rightarrow \quad x = 0 \quad \text{or} \quad y = 1 \]

Case 1: \(x = 0 \) then \(\text{(ii)} \Rightarrow 2y-1 = 0 \Rightarrow y = \frac{1}{2} \)
So \((0, \frac{1}{2})\) is a crit pt.

Case 2: \(y = 1 \) then \(\text{(ii)} \Rightarrow 2-1-x^2 = 0 \Rightarrow x^2 = 1 \Rightarrow x = 1 \) or \(x = -1 \)
So \((1,1)\) and \((-1,1)\) are also crit. pts

Critical Points are \((0, \frac{1}{2})\) \((1,1)\) \((-1,1)\)

\[f_{xx} = -2(y-1) \quad f_{yy} = 2 \quad f_{yx} = -2x \quad f_{yx} = 4x^2 \]

\[D = f_{xx} f_{yy} - f_{yx}^2 = -4(y-1) - 4x^2 \]

\[D(0, \frac{1}{2}) = -4(\frac{1}{2}) = -2 < 0 \Rightarrow (0, \frac{1}{2}) \text{ local minimum} \]

\[D(1,1) = -4 = D(-1,1) = -4 < 0 \Rightarrow (\pm 1, 1) \text{ are saddle points} \]

g(x,y) = x^2 + y^2 - z

\[f_x = \lambda g_x \quad -2x(y-1) = \lambda 2x \quad \text{(i)} \]
\[f_y = \lambda g_y \quad 2y-1-x^2 = \lambda 2y \quad \text{(ii)} \]
\[g = 0 \quad x^2 + y^2 = 2 \quad \text{(iii)} \]
\[c \Rightarrow x = 0 \text{ or } \lambda = -(y-1) \]

Case 1 \(x = 0 \) then \(\circled{\text{i}} \Rightarrow 2y - 1 = \lambda 2y \)
\[\Rightarrow x = 1 - \frac{1}{2y} = 1 - \frac{1}{\pm \sqrt{2}} \]

so \((0, \pm \sqrt{2}), (0, -\sqrt{2}) \) are possible max/mins

Case 2 \(\lambda = -y + 1 \) then \(\circled{\text{ii}} \Rightarrow 2y - 1 - x^2 = 2y(1 - y) \)
\[\Rightarrow x^2 = y^2 - 2 \]
\[\Rightarrow 2y - 1 + y^2 - 2 = 2y - 2y \]
\[\Rightarrow 3y^2 = 3 \Rightarrow y = \pm 1 \]
then \(\circled{\text{iii}} \Rightarrow x = \pm 1 \)

so \((1,1), (1,-1), (-1,1), (-1,-1) \) are possible max/mins

\[
\begin{array}{c|c}
(x, y) & f(x,y) = (y-x^2)(y-1) \\
\hline
(0, \sqrt{2}) & \sqrt{2}(\sqrt{2} - 1) = 2 - \sqrt{2} \\
(0, -\sqrt{2}) & -\sqrt{2}(-\sqrt{2} - 1) = 2 + \sqrt{2} \\
(\pm 1, 1) & (1 - (\pm 1)^2)(1 - 1) = 0 \\
(\pm 1, -1) & (-1 - (\pm 1)^2)(-1 - 1) = -2(-2) = 4
\end{array}
\]

\(\pm 1, 1 \) are mins with value 0
\(\pm 1, -1 \) are maxs with value 4

\(\text{Answer to part (3)} \)

Max/Min of \(f \) on \(x^2 + y^2 \leq 1 \) must occur at either a critical point local max or local min on the interior or on the boundary i.e at \((0, \frac{1}{2}), (\pm 1, 1), \text{ or } (\pm 1, -1)\)
\[f(0, \frac{1}{2}) = \frac{1}{2} \left(-\frac{1}{2}\right) = -\frac{1}{4} \] smallest value so

\[(0, \frac{1}{2}) \text{ is a global min with value } -\frac{1}{4} \]

\[(1, -1) \quad (-1, -1) \text{ are global maxs with value } 4 \]

\[f(x, y) = (y - x^2)(y - 1) \]

Note:
- Contours are tangent to \(x^2 + y^2 = 2 \) at \((\pm 1, -1) \) and \((0, \pm \sqrt{2})\)
- Saddle points look like distorted \(x \)s
- Local min looks like \(\infty \)
- \(f(x, y) = 0 \) is the union of the parabola \(y = x^2 \) and the line \(y = 1 \).