This Examination paper consists of 7 pages (including this one). Make sure you have all 7.

INSTRUCTIONS:
No memory aids allowed. No calculators allowed. No communication devices allowed.

PLEASE CIRCLE YOUR INSTRUCTOR’S NAME BELOW

MARKING:

<table>
<thead>
<tr>
<th>Question</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>10</td>
</tr>
<tr>
<td>Q2</td>
<td>12</td>
</tr>
<tr>
<td>Q3</td>
<td>12</td>
</tr>
<tr>
<td>Q4</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
</tr>
</tbody>
</table>

Names of Instructors: Jim Bryan, Dale Peterson, Ian Hewitt, Yariv Dror-Mizrahi, Ed Richmond
Q1 [10 marks]

Find the volume of the region in 3-space which is below the surface \(z = 1 + 3x^2y^2 \) and lies above the region in the xy-plane enclosed by the curves \(x = y^2 \) and \(x = 1 \).

\[
\text{Volume} = \int_1^1 \int_{y^2}^1 (1 + 3x^2y^2) \, dx \, dy
\]

\[
= \int_{y^2}^1 \left[x + x^3y^2 \right]_y^1 \, dy
\]

\[
= \int_{y^2}^1 \left(1 + y^2 - y^2 - \frac{1}{9}y^9 \right) \, dy
\]

\[
= \left[y - \frac{1}{9}y^9 \right]_{y^2}^1
\]

\[
= \left(1 - \frac{1}{9} \right) - \left(-1 + \frac{1}{9} \right) = 2 - \frac{2}{9} = \frac{16}{9}
\]
Q2 [12 marks]

Suppose \(T(x, y, z) = xy^2 - x + x^2z + yz^2 \) gives the temperature at the point \((x, y, z)\) in space.

(a) Find an equation of the plane tangent at \((1, 2, 1)\) to the level surface of \(T \) passing through that point. [4pts]

\[
\nabla T = \langle y^2 - 1 + 2xz, 2xy + z^2, x^2 + 2yz \rangle
\]

\[
\nabla T(1, 2, 1) = \langle 4 - 1 + 2, 4 + 1, 1 + 4 \rangle = \langle 5, 5, 5 \rangle
\]

Equation of tangent plane: \(5(x - 1) + 5(y - 2) + 5(z - 1) = 0 \)

or \((x - 1) + (y - 2) + (z - 1) = 0 \)

or \(x + y + z = 4 \)

(b) At time \(t = 0 \), a fly passes through \((1, 2, 1)\) moving toward the point \((4, 2, 5)\) at speed of 1 unit/sec. Calculate \(\frac{dT}{dt} \) at \(t = 0 \) for the fly. [4pts]

Direction of fly: \(\langle 4, 2, 5 \rangle - \langle 1, 2, 1 \rangle = \langle 3, 0, 4 \rangle \)

Unit vector \(\vec{u} = \langle \frac{3}{5}, 0, \frac{4}{5} \rangle \)

\[
\frac{dT}{dt} \bigg|_{t=0} = \nabla T \cdot \vec{u} = \langle 5, 5, 5 \rangle \cdot \langle \frac{3}{5}, 0, \frac{4}{5} \rangle = 7
\]
(c) A worm crawling on the plane \(2x - y + 2z = 2\) passes through the point \((1, 2, 1)\). The worm wishes to keep his temperature constant while increasing \(z\). In which direction should the worm move? Express your answer as a unit vector. [4pts]

Direction of worm is perpendicular to \(\langle 2, -1, 2 \rangle\)
since worm crawls on the plane \(2x - y + 2z = 2\)

Direction of worm is perpendicular to \(\langle 5, 5, 5 \rangle\) since worm wants his temperature constant.

Thus we seek a unit vector, with positive \(\hat{k}\) component, which is perpendicular to \(\langle 2, -1, 2 \rangle \& \langle 5, 5, 5 \rangle\)

\[
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 2 \\
5 & 5 & 5 \\
\end{vmatrix} = 5 \\
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & -1 & 2 \\
1 & 1 & 1 \\
\end{vmatrix} = 5 \langle -3, 0, 3 \rangle
\]

Make it a unit vector \(\langle -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \rangle\)
Q3 [12 marks]

Consider the following iterated integral

\[\int_{0}^{2} \int_{y = 2 - \sqrt{4-x^2}}^{x} f(x, y) \, dy \, dx. \]

(a) Sketch the region of integration. Be sure to label your axes and clearly mark x and y values on the axes. Give the coordinates of any intersection points. [4pt]

\[y = 2 - \sqrt{4-x^2} \]
\[\Rightarrow (y-2)^2 = 4-x^2 \]
\[\Rightarrow (y-2)^2 + x^2 = 2^2 \quad \text{circle of radius 2 centered at (0,2)} \]
\[\Rightarrow x^2 = 4 - (y-2)^2 \]
\[x = \sqrt{4-(y-2)^2} \]

(b) Change the order of integration to \(dx \, dy \). [4pt]

\[\int_{y=0}^{2} \int_{x=y}^{\sqrt{4-(y-2)^2}} f(x, y) \, dx \, dy \]

(c) Convert the integral to polar coordinates. [4pt]

\[\int_{\theta=0}^{\pi/4} \int_{r=0}^{4 \sin \theta} f(r \cos \theta, r \sin \theta) \, rdr \, d\theta \]

\[y^2 = 4y + y + x^2 = y \]
\[y^2 + x^2 = 4y \]
\[r^2 = 4r \sin \theta \]
\[r = 4 \sin \theta \]
Q4 [16 marks]

Consider the function \(f(x, y) = (4y + 7)e^{-x^2-y^2} \) on the domain \(x^2 + y^2 \leq 1 \).

(a) Find all critical points of \(f \) which are inside the domain [4 pts]

\[
\begin{align*}
 f_x &= -2x(4y+7)e^{-x^2-y^2} \\
 f_y &= 4e^{-x^2-y^2} - 2y(4y+7)e^{-x^2-y^2}
\end{align*}
\]

\(f_x = 0 \Rightarrow -2x(4y+7) = 0 \quad f_y = 0 \Rightarrow 4 - 2y(4y+7) = 0 \)

so \(x = 0 \) or \((4y+7) = 0 \)

so \(x = 0 \) and \(4 - 2y(4y+7) = 0 \) \(\Rightarrow \) \(4 - 8y^2 - 14y = 0 \) \(\Rightarrow \) \(8y^2 + 14y - 4 = 0 \)

\(\Rightarrow (8y - 2)(y + 2) = 0 \) \(\Rightarrow y = -2 \) or \(\frac{1}{4} \)

Critical points are \((0, -2) \) and \((0, \frac{1}{4}) \) only \((0, \frac{1}{4}) \) is in the domain

(b) Classify each of the critical points on the inside of the domain as a “local maximum”, “local minimum”, “saddle points”, or “discriminant is zero”. [4 pts]

\[
\begin{align*}
 f_{xx} &= -2(4y+7)e^{-x^2-y^2} + 4x^2(4y+7)e^{-x^2-y^2} \\
 f_{xy} &= -8ye^{-x^2-y^2} \\
 f_{yy} &= (4 - 2y(4y+7))e^{-x^2-y^2} \\
 f_{yx} &= f_{xy} = (4 - 8y^2 - 14y)e^{-x^2-y^2} \\
 f_x(0, \frac{1}{4}) &= -2(1+7)e^{-\frac{1}{16}} = -16e^{-\frac{1}{16}} \\
 f_y(0, \frac{1}{4}) &= (4 - 14)e^{-\frac{1}{16}} - \frac{2}{4} \left(4 - \frac{1}{2} - \frac{7}{2} \right)e^{-\frac{1}{16}} = -18e^{-\frac{1}{16}} \\
 f_{xx}(0, \frac{1}{4}) &= 0 \quad \text{so} \quad D = f_{xx}f_{yy} - f_{xy}^2 = (-16)e^{-\frac{1}{16}} (-18)e^{-\frac{1}{16}} > 0 \\
 \quad \text{and} \quad f_{xx} < 0 \quad \Rightarrow \quad (0, \frac{1}{4}) \quad \text{is a local maximum}
\end{align*}
\]
(c) Use the method of Lagrange multipliers to find the maximum and minimum values of \(f \) on the boundary of the domain. [6pt]

\[
1. \quad g(x,y) = x^2 + y^2 = 1 \quad f_x = \lambda g_x \quad f_y = \lambda g_y
\]

\[
2. \quad -2x(4y+7)e^{-x^2-y^2} = 2x \quad \Rightarrow \quad x = 0 \quad \text{or} \quad \lambda = -(4y+7)e^{-x^2-y^2}
\]

\[
3. \quad (4-8y^2-14y)e^{-x^2-y^2} = \lambda \, 2y
\]

\[
\lambda \, 2y = (4-8y^2-14y)e^{-x^2-y^2}
\]

\[
\lambda = \frac{(4-8y^2-14y)e^{-x^2-y^2}}{2y}
\]

\[
y-8y^2-14y = -8y^2-14y \quad \Rightarrow \quad y = 0
\]

\[
\text{no solution}
\]

\[
\text{x=0 sub into 1} \Rightarrow y = \pm 1
\]

\[
\text{so (x,y) = (1,0), (-1,0) are solutions}
\]

\[
\text{so (0,1) and (0,-1) are the only possibilities}
\]

\[
f(0,1) = 11e^{-1} \quad f(0,-1) = 3e^{-1}
\]

\[
\text{max on boundary} \quad \text{min on boundary}
\]

(d) Find the absolute maximum and minimum values of \(f \) on its whole domain. You may use the fact that \(e^{15/16} > 11/8 \). [2 pts]

Abs. max/min must occur at a crit pt on the interior or a max/min on the boundary. So only possibilities are (1,0), (0,1), (0,1/4)

\[
f(0,1) = 11e^{-1} \quad \text{since } e^{15/16} > 11/8
\]

\[
f(0,-1) = 3e^{-1} \quad \Rightarrow \quad 8e^{-1/16} > 11
\]

\[
f(0,1/4) = 8e^{-1/16} \quad \Rightarrow \quad 8e^{-1/16} > 11e^{-1}
\]

\[
\text{so } 3e^{-1} \text{ is absolute min and } 8e^{-1/16} \text{ is absolute max.}
\]