Math 200 Problem Set II

1) Find the equation of the sphere which has the two planes \(x + y + z = 3, \ x + y + z = 9 \) as tangent planes if the centre of the sphere is on the planes \(2x - y = 0, \ 3x - z = 0 \).

2) Find the equation of the plane that passes through the point \((-2, 0, -1)\) and through the line of intersection of \(2x + 3y - z = 0, \ x - 4y + 2z = -5 \).

3) Find the equations of the line through \((2, -1, -1)\) and parallel to each of the two planes \(x + y = 0 \) and \(x - y + 2z = 0 \). Express the equations of the line in vector and scalar parametric forms and in symmetric form.

4) Sketch and describe the following surfaces.
 a) \(4x^2 + y^2 = 16 \)
 b) \(x + y + 2z = 4 \)
 c) \(z^2 = y^2 + 4 \)
 d) \(\frac{x}{4} = \frac{y^2}{2} + \frac{z^2}{9} \)
 e) \(\frac{y^2}{9} + \frac{z^2}{4} = 1 + \frac{x^2}{16} \)
 f) \(z = x^2 \)
 g) \(z = \frac{y^4}{9} - \frac{x^2}{9} \)
 h) \(y^2 = x^2 + z^2 \)
 i) \(\frac{x^2}{9} + \frac{y^2}{12} + \frac{z^2}{9} = 1 \)
 j) \(x^2 + y^2 + z^2 + 4x - by + 9z - b = 0 \) where \(b \) is a constant.

5) Sketch the graphs of
 a) \(f(x, y) = \sin x \) \(0 \leq x \leq 2\pi, \ 0 \leq y \leq 1 \)
 b) \(f(x, y) = \sqrt{x^2 + y^2} \)
 c) \(f(x, y) = |x| + |y| \)

6) Sketch some of the level curves of
 a) \(f(x, y) = x^2 + 2y^2 \)
 b) \(f(x, y) = xy \)
 c) \(f(x, y) = \frac{y}{x^2+y^2} \)
 d) \(f(x, y) = xe^{-y} \)

7) Describe the level surfaces of
 a) \(f(x, y, z) = x^2 + y^2 + z^2 \)
 b) \(f(x, y, z) = x + 2y + 3z \)
 c) \(f(x, y, z) = x^2 + y^2 \)

8) Find the velocity, speed and acceleration at time \(t \) of the particle whose position is \(\vec{r}(t) \). Describe the path of the particle.
 a) \(\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} + ct \hat{k} \)
 b) \(\vec{r}(t) = a \cos t \sin t \hat{i} + a \sin^2 t \hat{j} + a \cos t \hat{k} \)
1) Find the equation of the sphere which has the two planes \(x + y + z = 3 \), \(x + y + z = 9 \) as tangent planes if the centre of the sphere is on the planes \(2x - y = 0 \), \(3x - z = 0 \).

Solution. The planes \(x + y + z = 3 \) and \(x + y + z = 9 \) are parallel. So the centre lies on \(x + y + z = 6 \) (the plane midway between \(x + y + z = 3 \) and \(x + y + z = 9 \)) as well as on \(y = 2x \) and \(z = 3x \). Solving,

\[
y = 2x, \quad z = 3x, \quad x + y + z = 6 \quad \Rightarrow \quad x + 2x + 3x = 6 \quad \Rightarrow \quad x = 1, \quad y = 2, \quad z = 3
\]

So the centre is at \((1, 2, 3)\). The normal to \(x + y + z = 3 \) is \((1, 1, 1)\). The points \((1, 1, 1)\) on \(x + y + z = 3 \) and \((3, 3, 3)\) on \(x + y + z = 9 \) differ by a vector, \((2, 2, 2)\), which is a multiple of this normal. So the distance between the planes is \(\left\lVert (2, 2, 2) \right\rVert = 2\sqrt{3} \) and the radius of the sphere is \(\sqrt{3} \). The sphere is

\[
(x - 1)^2 + (y - 2)^2 + (z - 3)^2 = 3
\]

2) Find the equation of the plane that passes through the point \((-2, 0, -1)\) and through the line of intersection of \(2x + 3y - z = 0\), \(x - 4y + 2z = -5\).

Solution. First we’ll find two points on the line of intersection of \(2x + 3y - z = 0\), \(x - 4y + 2z = -5\). This will give us three points on the plane.

\[
\begin{align*}
2x + 3y - z &= 0 \\
x - 4y + 2z &= -5
\end{align*}
\]

\[
\Leftrightarrow \begin{align*}
2x + 3y &= z \\
x - 4y &= -2z - 5
\end{align*}
\]

In the last step, we subtracted twice the second equation from the first. So if \(z = -2\), then \(y = \frac{1}{2}\) and \(x = 0\). We conclude that the three points \((-2, 0, -1)\), \((-1, 0, -2)\) and \((0, -\frac{1}{2}, -\frac{1}{2})\) must all lie on the plane. So the two vectors \((-2, 0, -1) - (-1, 0, -2) = (-1, 0, 1)\) and \((0, -\frac{1}{2}, -\frac{1}{2}) - (-1, 0, -2) = (1, -\frac{1}{2}, -\frac{1}{2})\) must be parallel to the plane. So the normal to the plane is \(\langle -1, 0, 1 \rangle \times \langle 1, -\frac{1}{2}, -\frac{1}{2} \rangle = \langle \frac{1}{2}, -\frac{5}{2}, \frac{5}{2} \rangle\) or, equivalently \(\hat{n} = (5, -9, 5)\). The equation of the plane is

\[
5(x + 2) - 9y + 5(z + 1) = 0 \quad \text{or} \quad 5x - 9y + 5z = -15
\]

3) Find the equations of the line through \((2, -1, -1)\) and parallel to each of the two planes \(x + y = 0\) and \(x - y + 2z = 0\). Express the equations of the line in vector and scalar parametric forms and in symmetric form.

Solution. One vector normal to \(x + y = 0\) is \((1, 1, 0)\). One vector normal to \(x - y + 2z = 0\) is \((1, -1, 2)\). The vector \((1, -1, -1)\) is perpendicular to both of those normals and hence is parallel to both planes. So \((1, -1, -1)\) is also parallel to the line. The vector parametric equation of the line is

\[
\vec{r} = (2, -1, -1) + t(1, -1, -1)
\]

The scalar parametric equations of the line are

\[
x = 2 + t, \quad y = -1 - t, \quad z = -1 - t
\]

The symmetric equations are

\[
t = \frac{x - 2}{-y + 1} = \frac{-z - 1}{1}
\]
4) Sketch and describe the following surfaces.

a) \(4x^2 + y^2 = 16\)
 b) \(x + y + 2z = 4\)
 c) \(z^2 = y^2 + 4\)
 d) \(x = \frac{y^2}{4} + \frac{z^2}{9}\)
 e) \(\frac{y^2}{9} + \frac{z^2}{4} = 1 + \frac{x^2}{16}\)
 f) \(z = x^2\)
 g) \(z = \frac{x^2}{4} - \frac{y^2}{9}\)
 h) \(y^2 = x^2 + z^2\)
 i) \(\frac{y^2}{9} + \frac{z^2}{4} = 1\)
 j) \(x^2 + y^2 + z^2 + 4x - by + 9z - b = 0\) where \(b\) is a constant.

Solution.

a) This is an elliptic cylinder parallel to the \(z\)-axis. Its cross-section (parallel to the \(xy\)-plane) is an ellipse centered on the origin with one semiaxis of length 2 along the \(x\)-axis and one semiaxis of length 4 along the \(y\)-axis.

b) This is a plane through \((4, 0, 0)\), \((0, 4, 0)\) and \((0, 0, 2)\).

c) This is a hyperbolic cylinder parallel to the \(x\)-axis. Its cross-section (parallel to the \(yz\)-plane) is a hyperbola centered on the origin with asymptotes \(z = \pm y\). No points have \(|z| < 2\).

d) This is an elliptic paraboloid. Its cross-sections parallel to the \(yz\)-plane are ellipses with semiaxes \(\sqrt{x}\) along the \(y\)-axis and \(\frac{3\sqrt{2}}{2}\sqrt{x}\) along the \(z\)-axis. There are no points on the surface with \(x < 0\). As you move out along the \(x\)-axis, the ellipses grow at a rate proportional to \(\sqrt{x}\).

e) This is a hyperboloid of one sheet with axis the \(x\)-axis. Its cross-sections parallel to the \(yz\)-plane are ellipses with semiaxes \(3\sqrt{1 + \frac{x^2}{16}}\) parallel to the \(y\)-axis and \(2\sqrt{1 + \frac{x^2}{16}}\) parallel to the \(z\)-axis. As you move out along the \(x\)-axis, the ellipses grow at a rate proportional to \(\sqrt{1 + \frac{x^2}{16}}\), which for large \(x\) is approximately \(\frac{|x|}{4}\).

f) This is a parabolic cylinder parallel to the \(y\)-axis. Its cross-section (parallel to the \(xz\)-plane) is a parabola with vertex at the origin.

g) This is a hyperbolic paraboloid. Each cross-section parallel to the \(xz\)-plane is a parabola opening downwards, with vertex at \((0, y, \frac{y^2}{4})\). Each cross-section parallel to the \(yz\)-plane is a parabola opening upwards, with vertex at \((x, 0, -\frac{x^2}{9})\). Each cross-section parallel to the \(xy\)-plane is a hyperbola with asymptotes \(y = \pm \frac{x}{3}x\).

h) This is a circular cone. Each cross-section parallel to the \(xz\)-plane is a circle of radius \(|y|\).

i) This is an ellipsoid centered on the origin with semiaxes 3, \(2\sqrt{3}\) and 3 along the \(x\), \(y\) and \(z\)-axes, respectively.

j) \(x^2 + y^2 + z^2 + 4x - by + 9z - b = 0\) if and only if \((x + 2)^2 + (y - \frac{b}{2})^2 + (z + \frac{9}{2})^2 = b + 4 + \frac{b^2}{4} + \frac{81}{4}\). This is a sphere of radius \(\frac{1}{2}\sqrt{b^2 + 4b + 97}\) centered on \(\frac{1}{2}(-4, b, -9)\).
5) Sketch the graphs of
 a) \(f(x, y) = \sin x \quad 0 \leq x \leq 2\pi, \ 0 \leq y \leq 1 \)
 b) \(f(x, y) = \sqrt{x^2 + y^2} \)
 c) \(f(x, y) = |x| + |y| \)

 Solution. a) The graph is \(z = \sin x \) with \((x, y)\) running over \(0 \leq x \leq 2\pi, \ 0 \leq y \leq 1\). For each fixed \(y_0\) between 0 and 1, the intersection of this graph with the vertical plane \(y = y_0\) is the same \(\sin\) graph \(z = \sin x\) with \(x\) running from 0 to \(2\pi\). So the whole graph is just a bunch of 2–d \(\sin\) graphs stacked side–by–side. This gives the graph on the left below.

 b) The graph is \(z = \sqrt{x^2 + y^2}\). For each fixed \(z_0 \geq 0\), the intersection of this graph with the horizontal plane \(z = z_0\) is the circle \(\sqrt{x^2 + y^2} = z_0\). This circle is centred on the \(z\)–axis and has radius \(z_0\). So the graph is the upper half of a cone. It is the middle sketch below.

 c) The graph is \(z = |x| + |y|\). For each fixed \(z_0 \geq 0\), the intersection of this graph with the horizontal plane \(z = z_0\) is the square \(|x| + |y| = z_0\). The side of the square with \(x, y \geq 0\) is the straight line \(x + y = z_0\). The side of the square with \(x \geq 0\) and \(y \leq 0\) is the straight line \(x - y = z_0\) and so on. The four corners of the square are \((\pm z_0, 0, z_0)\) and \((0, \pm z_0, z_0)\). So the graph is a stack of squares. It is an upside down four–sided pyramid. The part of the pyramid in the first octant (that is, \(x, y, z \geq 0\)) is the right hand sketch below.

6) Sketch some of the level curves of
 a) \(f(x, y) = x^2 + 2y^2 \)
 b) \(f(x, y) = xy \)
 c) \(f(x, y) = \frac{y}{x^2+y^2} \)
 d) \(f(x, y) = xe^{-y} \)

 Solution.
Observe that, for \(c \neq 0 \) and \((x, y) \neq (0, 0)\),
\[
\frac{y}{x^2+y^2} = c \iff x^2 + y^2 - \frac{1}{c} y = 0 \iff x^2 + (y - \frac{1}{2c})^2 = \frac{1}{4c^2}
\]
is a circle that passes through the origin and has centre at \((0, \frac{1}{2c}) \).

7) Describe the level surfaces of

a) \(f(x, y, z) = x^2 + y^2 + z^2 \)
b) \(f(x, y, z) = x + 2y + 3z \)
c) \(f(x, y, z) = x^2 + y^2 \)

Solution. a) If \(c > 0 \), \(f(x, y, z) = c \) is the sphere of radius \(\sqrt{c} \) centered at the origin. If \(c = 0 \), \(f(x, y, z) = c \) is just the origin. If \(c < 0 \), no \((x, y, z)\) satisfies \(f(x, y, z) = c \).
b) \(f(x, y, z) = c \) is the plane normal to \((1, 2, 3)\) passing through \((c, 0, 0)\).
c) If \(c > 0 \), \(f(x, y, z) = c \) is the cylinder parallel to the \(z \)-axis whose cross-section is the circle of radius \(\sqrt{c} \) centered at the origin. If \(c = 0 \), \(f(x, y, z) = c \) is the \(z \)-axis. If \(c < 0 \), no \((x, y, z)\) satisfies \(f(x, y, z) = c \).

8) Find the velocity, speed and acceleration at time \(t \) of the particle whose position is \(\vec{r}(t) \). Describe the path of the particle.

a) \(\vec{r}(t) = a \cos t \, \hat{i} + a \sin t \, \hat{j} + ct \, \hat{k} \)
b) \(\vec{r}(t) = a \cos t \sin t \, \hat{i} + a \sin^2 t \, \hat{j} + a \cos t \, \hat{k} \)

Solution. a)
\[
\vec{r}(t) = a \cos t \, \hat{i} + a \sin t \, \hat{j} + ct \, \hat{k} \\
\vec{v}(t) = -a \sin t \, \hat{i} + a \cos t \, \hat{j} + c \, \hat{k} \\
\vec{a}(t) = -a \cos t \, \hat{i} - a \sin t \, \hat{j}
\]
The \((x, y) = a(\cos t, \sin t)\) coordinates go around a circle of radius \(a \) and centre \((0, 0)\) counterclockwise. One circle is completed for each increase of \(t \) by \(2\pi \). At the same time, the \(z \) coordinate increases at a constant rate. Each time the \((x, y)\) coordinates complete one circle, the \(z \) coordinate increases by \(2\pi c \).
The path is a helix with radius \(a \) and with each turn having height \(2\pi c \).
b)
\[
\vec{r}(t) = a \cos t \sin t \, \hat{i} + a \sin^2 t \, \hat{j} + a \cos t \, \hat{k} \\
= \frac{a}{2} \sin 2t \, \hat{i} + a \frac{1 - \cos 2t}{2} \, \hat{j} + a \cos t \, \hat{k} \\
\vec{v}(t) = a \cos 2t \, \hat{i} + a \sin 2t \, \hat{j} - a \sin t \, \hat{k} \\
\vec{a}(t) = -2a \sin 2t \, \hat{i} + 2a \cos 2t \, \hat{j} - a \cos t \, \hat{k}
\]
The \((x, y)\) coordinates go around a circle of radius \(\frac{a}{2} \) and centre \(\left(0, \frac{a}{2}\right)\) counterclockwise. At the same time the \(z \) coordinate oscillates half as fast.