Problem 1 (25 points): Consider the curve with the parameterization
\[r(t) = ti + t^2 j + tk \]
for \(-\infty < t < \infty\).

1. (15 points.) Compute the curvature \(\kappa(t) \) as a function of \(t \).

2. (5 points.) What is the limit of \(\kappa(t) \) as \(t \) approaches infinity? What is the limit of \(\kappa(t) \) as \(t \) approaches minus infinity?

3. (5 points.) For what value of \(t \) is \(\kappa(t) \) maximum?
Problem 2 (25 points):

1. **15 points.** Find the length of the curve

\[\mathbf{r}(t) = e^t \mathbf{i} + e^t \sin t \mathbf{j} + e^t \cos t \mathbf{k} \]

from \(t = 0 \) to \(t = T \) where \(T \) is any positive number.

2. **10 points.** Reparameterize \(\mathbf{r}(t) \) with respect to arclength measured from the point where \(t = 0 \) in the direction of increasing \(t \).
Problem 3. In each problem below, select the correct answer; you do not need to show work; no partial credit will be given.

Let \(\mathbf{r}(t) \) be a vector valued function. Let \(\mathbf{r}', \mathbf{r}'' \), and \(\mathbf{r}''' \) denote \(\frac{d\mathbf{r}}{dt}, \frac{d^2\mathbf{r}}{dt^2}, \) and \(\frac{d^3\mathbf{r}}{dt^3} \) respectively.

1. 15 points. \(\frac{d}{dt}[(\mathbf{r} \times \mathbf{r}') \cdot \mathbf{r}'''] \) is given by
 (a) \((\mathbf{r}' \times \mathbf{r}''') \cdot \mathbf{r}''' \)
 (b) \((\mathbf{r}' \times \mathbf{r}''') \cdot \mathbf{r} + (\mathbf{r} \times \mathbf{r}') \cdot \mathbf{r}''' \)
 (c) \((\mathbf{r} \times \mathbf{r}') \cdot \mathbf{r}''' \)
 (d) 0
 (e) None of the above.

2. 15 points. \(\frac{d}{dt}|\mathbf{r}(t)| \) is given by:
 (a) \(|\mathbf{r}'(t)| \)
 (b) \(\frac{\mathbf{r} \cdot \mathbf{r}'}{|\mathbf{r}|} \)
 (c) \(2\mathbf{r} \cdot \mathbf{r}' \)
 (d) 0
 (e) None of the above.
Problem 4 (25 points): Evaluate the integral

\[\int_C (x^2 + y^2)(xdy - ydx) \]

where \(C \) is the curve that bounds the “pie shaped” region in the \(xy \)-plane given by \(\{ x \geq 0, y \geq 0, x^2 + y^2 \leq 1 \} \) and \(C \) is oriented in the counter-clockwise direction.