Suppose that a particle of mass m is acted on by a central force whose magnitude is proportional to $1/r^d$ for some integer d. That is

$$F = \frac{-mC}{r^{d+1}}r$$

where $r = |\mathbf{r}|$ and C is a positive constant. In the case of a gravitational force, $d = 2$ and we know from Kepler’s 1st law that the orbits are ellipses with one of the foci at the origin.

Suppose instead that there is a circular orbit that passes through the origin. Find the unique value of d that allows such an orbit.

Suggested method:

1. Show that $\mathbf{v} \times \mathbf{r}$ is a conserved quantity (angular momentum).

2. Let \mathbf{r}_0 be the point on the circle antipodal to the origin and let \mathbf{r}_1 be a point on the circle 90 degrees away from the origin and \mathbf{r}_0. Let v_0 and v_1 be the speed of the particle at \mathbf{r}_0 and \mathbf{r}_1 respectively. Compute the angular momentum at \mathbf{r}_0 and \mathbf{r}_1.

3. Consider the decomposition of the acceleration into tangential and normal components:

$$\mathbf{a} = v' \mathbf{T} + \kappa v^2 \mathbf{N}.$$

Take the inner product of both sides of this equation with \mathbf{N} and evaluate at \mathbf{r}_0 and \mathbf{r}_1.

4. Use the three equations obtained in the previous steps to solve for d.