
1. (4 points) Find a vector function for the curve of intersection of \(x^2 + y^2 = 9 \) and \(y + z = 2 \).

 \textit{Solutions:}

 We have: \(x^2 + y^2 = 9 \) \(\Rightarrow \) \((3 \cos(t))^2 + (3 \sin(t))^2 = 9\), then \(x = 3 \cos(t) \) and \(y = 3 \sin(t) \).[2]

 Since \(y + z = 2 \), then: \(z = 2 - 3 \sin(t) \). [1]

 Therefore, we have: \(\langle 3 \cos(t), 3 \sin(t), 2 - 3 \sin(t) \rangle \).[1]

2. (4 points) A bug is crawling outward along the spoke of a wheel that lies along a radius of the wheel. The bug is crawling at 1 unit per second and the wheel is rotating at 1 radian per second. Suppose the wheel lies in the \(y - z \) plane with center at the origin, and at time \(t = 0 \) the spoke lies along the positive \(y \) axis and the bug is at the origin. Find a vector function \(r(t) \) for the position of the bug at time \(t \).

 \textit{Solutions:}

 The \textit{x-value} of the vector function will be always 0, as the wheels lies in the \(y - z \) plane, i.e. \(x(t) = 0 \).[1]. Now, ignoring the bug and fixing a point in the wheel. Since the wheel is rotating at 1 rad/s (\textit{counterclockwise}), its period is \(2\pi \) and we can describe the position of this point as: \(y = r \cos(t) \) and \(z = r \sin(t) \), where \(r \) is the distance from the point to the center of the wheels [2].

 Introducing the bug back, we know it will only change the value of \(r \) as it is crawling upward at speed of 1 \textit{unit}/s. Then, \(r = t \). [1]

 Therefore, \(x(t) = 0 \), \(y(t) = t \cos(t) \), and \(z(t) = t \sin(t) \rightarrow r(t) = \langle 0, t \cos(t), t \sin(t) \rangle \).

 Also right for \textit{clockwise} \(z(t) = t \sin(t) \rightarrow r(t) = \langle 0, t \cos(-t), t \sin(-t) \rangle \).

\textbf{Level of Completeness: 2 points.}