Homework # 3

Due Thursday, October 13th

1. Let $X \subset \mathbb{P}^n$ be a projective variety and let $V \subset \mathbb{A}^m$ be an affine variety. Let $\phi : X \rightarrow Y$ be a morphism. Prove that ϕ is constant, i.e. there exists a $v \in V$ such that $\phi(x) = v$ for all $x \in X$.

2. Show that any irreducible conic in \mathbb{A}^2 is isomorphic to $Z(y - x^2)$ or $Z(xy - 1)$.

3. Let X be an affine variety, and let G be a finite group. Assume that G acts on X, i.e. for every $g \in G$ we are given an automorphism $\phi_g : C \rightarrow C$ such that $\phi_{gh} = \phi_g \circ \phi_h$ for all $g, h \in G$ and if $e \in G$ is the identity, then ϕ_e is the identity morphism.

 (a) Let $A(X)^G$ be the subalgebra of $A(X)$ consisting of G-invariant functions on X, i.e. all $f \in A(X)$ such that $f(p) = f(\phi_g(p))$ for all $g \in G$ and all $p \in X$. By a famous theorem of Emmy Noether, $A(X)^G$ is finitely generated, let Y be the corresponding affine variety so that $A(Y) \cong A(X)^G$. The homomorphism $A(X)^G \rightarrow A(X)$ given by inclusion gives rise to a morphism of affine varieties $\pi : X \rightarrow Y$. Show that Y can be considered as X/G, the quotient of X by G in the following sense:

 i. π is surjective.

 ii. If $p, q \in X$ then $\pi(p) = \pi(q)$ if and only if there exists $g \in G$ such that $\phi_g(p) = q$.

 (b) For a given group action, is an affine variety with the above two properties uniquely determined?

 (c) Let $\mu_n = \exp \left(\frac{2\pi i k}{n} \right)$, $i = 0, \ldots, n - 1$ be the group of nth roots of 1. Let μ_n act on \mathbb{A}^2 by $\phi_{\zeta}(x, y) = (\zeta x, \zeta^{-1} y)$ for any $\zeta \in \mu_n$. Find a hypersurface $Y \subset \mathbb{A}^3$ such that $Y_n \cong \mathbb{A}^2 / \mu_n$. Show that Y_n is not isomorphic to \mathbb{A}^2. (Hint: you may use a topological argument).
4. Let \(C \subset \mathbb{P}^2 \) be the cubic curve given by \(zy^2 = x(x^2 - z^2) \). In class we defined an automorphism \(\phi : C \to C \) which was given by \(\phi(a, b) = (-1/a, -b/a^2) \) in the affine coordinates \(a = x/z, b = y/z \), and the two points \((0 : 0 : 1), (0 : 1 : 0)\) where the formula is not well defined are exchanged by \(\phi \). Note that \(\phi \circ \phi \) is the identity, so \(\phi \) defines an action of \(G = \mathbb{Z}/2\mathbb{Z} \) on \(C \).

(a) Determine all the fixed points of \(\phi \).

(b) Show that there is a morphism \(\pi : C \to \mathbb{P}^1 \) such that \(\pi(p) = \pi(q) \) if and only if \(p = q \) or \(\phi(p) = q \). In other words, show that \(C/G \cong \mathbb{P}^1 \).

(c) Consider the variant of the above automorphism given by \(\phi'(a, b) = (-1/a, b/a^2) \) (with \(\phi' \) also exchanging \((0 : 0 : 1)\) and \((0 : 1 : 0)\)). Determine all the fixed points of \(\phi' \).

(d) Show that the quotient \(C/G \) where the action of \(G \) on \(C \) is given by \(\phi' \) is isomorphic to the original curve \(C \subset \mathbb{P}^2 \). (Hint: consider the action on the affine patch of \(C \) where \(x \neq 0 \) and use problem 3a). I will remark that the fact that \(C/G \cong C \) is unusual and special to this particular elliptic curve.