Constant Coefficient Linear Systems

Consider the following system of ODEs.

\[\begin{align*}
 y_1' &= y_1 + 2y_2 \\
 y_2' &= 3y_1 + 2y_2
 \end{align*} \quad (1)
\]

Let \(\vec{y}(t) = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} \), \(\vec{y}'(t) = \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} \)

We can write (1) as

\[\vec{y}'(t) = A \vec{y}(t) \quad (2) \]

where

\[A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \]

Q1: How can we solve this system for \(\vec{y}(t) \)?

Let us consider the scalar ODE,

\[\frac{dy}{dt} = \lambda y(t) \quad (3) \]

\(\lambda \) - growth rate
The solution of this equation is
\[y_{eq} = Ce^{\lambda t} \]

Observe that (2) and (3) are first order linear. We expect their solutions to have a similar form.

Take
\[\vec{y}(t) = CE^{\lambda t} \vec{v} \quad (4) \]

where \(\lambda \) is a scalar (growth rate)
\(C \) - constant
\(\vec{v} \) - constant vector

Put the solution in (4) into the system
\[\dot{\vec{y}}(t) = \Lambda \vec{y}(t) \]
\[\lambda CE^{\lambda t} \vec{v} = \Lambda CE^{\lambda t} \vec{v} \]
\[\lambda \vec{v} = \Lambda \vec{v} \]
\[\Lambda \vec{v} = \lambda \vec{v} \quad (\text{eigenvalue problem}) \]
This implies that λ is an eigenvalue of A with corresponding eigenvector \vec{v}.

\[A\vec{v} = \lambda \vec{v} \]

\[\Rightarrow A\vec{v} - \lambda \vec{v} = \vec{0} \]

\[(A - \lambda I)\vec{v} = \vec{0} \quad \text{(System of algebraic equations)} \]

We seek a non-trivial \vec{v} (i.e. $\vec{v} \neq \vec{0}$) that satisfies this equation.

\[\Rightarrow \det(A - \lambda I) = 0 \quad \text{must hold.} \]

To get the eigenvalue of matrix A, we solve

\[\det(A - \lambda I) = 0 \quad \text{(Characteristic equation)} \]

or

\[|A - \lambda I| = 0 \]
And for the corresponding eigenvalue, we solve

\[(A - \lambda I) \vec{v} = \vec{0} \]

Thus, \[\vec{y}(t + 1) = c e^{\lambda t} \vec{v} \]
is a solution of the system.

If \[\vec{y}_1(t) = c_1 e^{\lambda t} \vec{v}_1 \]
and \[\vec{y}_2(t) = c_2 e^{\lambda t} \vec{v}_2 \]
then are solutions \[\vec{y}_1(t) + \vec{y}_2(t) \]
of a linear system, then

\[\vec{y}(t) + \vec{y}(t) = c_1 e^{\lambda t} \vec{v}_1 + c_2 e^{\lambda t} \vec{v}_2 \]
is also a solution of the system.

This is called principle of superposition.
Let us return to the example
\[\dot{y}(t) = A \cdot y(t) \]
where
\[A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \]

Let \(\lambda \) be an eigenvalue of \(A \),
then \[|A - \lambda I| = 0 \]

\[\begin{vmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{vmatrix} = 0 \]

\[(1-\lambda)(2-\lambda) - 6 = 0 \]
\[\lambda^2 - 3\lambda - 4 = 0 \]
\[\lambda_1 = 4 \quad \text{or} \quad \lambda_2 = -1 \]