The Simplex Method, including URS variables

Entering Variable:

1. Choose a nonbasic URS variable with a nonzero entry in the objective row. If the entry is negative, it enters increasing; if positive, it enters decreasing.
2. If there are none of those, choose an ordinary (≥ 0, but not artificial) variable with a negative entry in the objective. It enters increasing.
3. Artificial variables are never chosen as entering variable (except of course for an initial pivot that puts a_{0} in the basis).
4. If there's a choice in (1) or in (2), we usually (if not using Bland's Rule) choose the entry that's largest in absolute value, and break ties by choosing the one farther left in the tableau.

Leaving Variable: Suppose x_{E} is the entering variable.

1. If x_{E} is increasing, calculate ratios (constant term) $/\left(x_{E}\right.$ entry) for non-URS basic variables with positive entries in the x_{E} column.
2. If x_{E} is decreasing, calculate ratios (constant term) $/\left(-x_{E}\right.$ entry) for non-URS basic variables with negative entries in the x_{E} column.
3. In Phase II, if there are basic artificial variables (which must have constant term 0), include the ratio 0 for these variables if the x_{E} entry is nonzero (either positive or negative).
4. The leaving variable is one with the minimum ratio. In case of a tie, artificial variables have first priority. Otherwise, if not using Bland's Rule, break ties by taking the candidate that is higher up in the tableau.

Worked example:

$$
\begin{array}{cl}
\operatorname{maximize} & 4 x_{1}-x_{2}-x_{3}+x_{4} \\
\text { subject to } & 3 x_{1}-x_{2}-x_{3} \leq-3 \\
& x_{1}+4 x_{4} \leq-2 \\
& -3 x_{1}+2 x_{2}+x_{3}-2 x_{4} \leq 6 \\
& x_{1}-2 x_{2}=-2 \\
& x_{1}, x_{2} \geq 0, x_{3}, x_{4} U R S
\end{array}
$$

We change the last equation to $-x_{1}+2 x_{2}+a_{4}=2$, and subtract the artificial variable a_{0} from the first two constraints. The temporary objective is $w=-a_{4}-a_{0}$. The initial tableau is

w	z	x_{1}	x_{2}	x_{3}^{U}	x_{4}^{U}	s_{1}	s_{2}	s_{3}	a_{4}	a_{0}	rhs		
1	0	0	0	0	0	0	0	0	1	1	0	$=$	w
0	1	-4	1	1	-1	0	0	0	0	0	0	$=$	z
0	0	3	-1	-1	0	1	0	0	0	-1	-3	$=$	s_{1}
0	0	1	0	0	4	0	1	0	0	-1	-2	$=$	s_{2}
0	0	-3	2	1	-2	0	0	1	0	0	6	$=$	s_{3}
0	0	-1	2	0	0	0	0	0	1	0	2	$=$	a_{4}

Subtract the a_{4} row from the w row to fix the a_{4} column. The new w row is $[1,0,1,-2,0,0,0,0,0,0,1,-2]$

Initial pivot to make a feasible bfs for the relaxed problem: a_{0} enters, s_{1} leaves.

w	z	x_{1}	x_{2}	x_{3}^{U}	x_{4}^{U}	s_{1}	s_{2}	s_{3}	a_{4}	a_{0}	rhs		
1	0	4	-3	-1	0	1	0	0	0	0	-5	$=$	w
0	1	-4	1	1	-1	0	0	0	0	0	0	$=$	z
0	0	-3	1	1	0	-1	0	0	0	1	3	$=$	a_{0}
0	0	-2	1	1	4	-1	1	0	0	0	1	$=$	s_{2}
0	0	-3	2	1	-2	0	0	1	0	0	6	$=$	s_{3}
0	0	-1	2	0	0	0	0	0	1	0	2	$=$	a_{4}

The URS variable x_{3} has a negative entry in the w row, so it enters increasing. Ratios are $3 / 1$ for $s_{1}, 1 / 1$ for $s_{2}, 6 / 1$ for s_{3}, so s_{2} leaves.

w	z	x_{1}	x_{2}	x_{3}^{U}	x_{4}^{U}	s_{1}	s_{2}	s_{3}	a_{4}	a_{0}	rhs		
1	0	2	-2	0	4	0	1	0	0	0	-4	$=$	w
0	1	-2	0	0	-5	1	-1	0	0	0	-1	$=$	z
0	0	-1	0	0	-4	0	-1	0	0	1	2	$=$	a_{0}
0	0	-2	1	1	4	-1	1	0	0	0	1	$=$	x_{3}^{U}
0	0	-1	1	0	-6	1	-1	1	0	0	5	$=$	s_{3}
0	0	-1	2	0	0	0	0	0	1	0	2	$=$	a_{4}

The URS variable x_{4} has a positive entry in the w row, so it enters decreasing. Ratios are $2 / 4$ for $a_{0}, 5 / 6$ for s_{2}, so a_{0} leaves.

w	z	x_{1}	x_{2}	x_{3}^{U}	x_{4}^{U}	s_{1}	s_{2}	s_{3}	a_{4}	a_{0}	rhs		
1	0	1	-2	0	0	0	0	0	0	1	-2	$=$	w
0	1	$-3 / 4$	0	0	0	1	$1 / 4$	0	0	$-5 / 4$	$-7 / 2$	$=$	z
0	0	$1 / 4$	0	0	1	0	$1 / 4$	0	0	$-1 / 4$	$-1 / 2$	$=$	x_{4}^{U}
0	0	-3	1	1	0	-1	0	0	0	1	3	$=$	x_{3}^{U}
0	0	$1 / 2$	1	0	0	1	$1 / 2$	1	0	$-3 / 2$	2	$=$	s_{3}
0	0	-1	2	0	0	0	0	0	1	0	2	$=$	a_{4}

Don't be alarmed by the negative value for x_{4}, because that's a URS variable. Now x_{2} enters and a_{4} leaves.

w	z	x_{1}	x_{2}	x_{3}^{U}	x_{4}^{U}	s_{1}	s_{2}	s_{3}	a_{4}	a_{0}	rhs		
1	0	0	0	0	0	0	0	0	1	1	0	$=$	w
0	1	$-3 / 4$	0	0	0	1	$1 / 4$	0	0	$-5 / 4$	$-7 / 2$	$=$	z
0	0	$1 / 4$	0	0	1	0	$1 / 4$	0	0	$-1 / 4$	$-1 / 2$	$=$	x_{4}^{U}
0	0	$-5 / 2$	0	1	0	-1	0	0	$-1 / 2$	1	2	$=$	x_{3}^{U}
0	0	1	0	0	0	1	$1 / 2$	1	$-1 / 2$	$-3 / 2$	1	$=$	s_{3}
0	0	$-1 / 2$	1	0	0	0	0	0	$1 / 2$	0	1	$=$	x_{2}

We've successfully concluded Phase I with $w=0$, so we delete the w row and column and continue with the objective $z . x_{1}$ enters and s_{3} leaves.

z	x_{1}	x_{2}	x_{3}^{U}	x_{4}^{U}	s_{1}	s_{2}	s_{3}	a_{4}	a_{0}	rhs		
1	0	0	0	0	$7 / 4$	$5 / 8$	$3 / 4$	$-3 / 8$	$-19 / 8$	$-11 / 4$	$=$	z
0	0	0	0	1	$-1 / 4$	$1 / 8$	$-1 / 4$	$1 / 8$	$1 / 8$	$-3 / 4$	$=$	x_{4}^{U}
0	0	0	1	0	$3 / 2$	$5 / 4$	$5 / 2$	$-7 / 4$	$-11 / 4$	$9 / 2$	$=$	x_{3}^{U}
0	1	0	0	0	1	$1 / 2$	1	$-1 / 2$	$-3 / 2$	1	$=$	x_{1}
0	0	1	0	0	$1 / 2$	$1 / 4$	$1 / 2$	$1 / 4$	$-3 / 4$	$3 / 2$	$=$	x_{2}

This tableau is optimal.

