Math 340 sec. 202: Solutions to Sample Midterm
1(a). The initial basic solution is not feasible, so we need a Phase I. Adding an artificial variable a_{0} and temporary objective tableau $w=-a_{0}$, the initial tableau is

	w	z	x_{1}	x_{2}	x_{3}				a_{0}		
w	1	0	0	0	0	0	0	0	1	0	
z	0	1	-1	-3	1	0	0	0	0	0	
s_{1}	0	0	0	2	-2	1	0	0	-1	-2	
s_{2}	0	0	-1	0	-2	0	1	0	-1	-1	
s_{3}	0	0	1	1	1	0	0	1	0	2	

Now a_{0} enters the basis and the most negative slack variable, s_{1}, leaves: the result is a bfs for the relaxed problem.

	w	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	a_{0}	
w	1	0	0	2	-2	1	0	0	0	-2
	a_{0}	0	1	-1	-3	1	0	0	0	0
a_{0}	0	0	0	-2	2	-1	0	0	1	2
s_{2}	0	0	-1	-2	0	-1	1	0	0	1
s_{3}	0	0	1	1	1	0	0	1	0	2

x_{3} enters and a_{0} leaves.

	w	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	a_{0}		
	1	0	0	0	0	0	0	0	1	0	
		0	1	-1	-2	0	$1 / 2$	0	0	$-1 / 2$	-1
x_{3}	0	0	0	-1	1	$-1 / 2$	0	0	$1 / 2$	1	
s_{2}	0	0	-1	-2	0	-1	1	0	0	1	
s_{3}	0	0	1	2	0	$1 / 2$	0	1	$-1 / 2$	1	

The temporary objective value is now 0 so the bfs is feasible. We delete the w row and column and the a_{0} column, making the z row the objective again. x_{2} enters and s_{3} leaves the basis.

	x_{1}		x_{1}	x_{3}	s_{1}	s_{2}	s_{3}	
z	1	0	0	0	1	0	1	0
x_{3}	0	$1 / 2$	0	1	$-1 / 4$	0	$1 / 2$	$3 / 2$
s_{2}	0	0	0	0	$-1 / 2$	1	1	2
x_{2}	0	$1 / 2$	1	0	$1 / 4$	0	$1 / 2$	$1 / 2$

This is optimal. The solution is $x_{1}=0, x_{2}=1 / 2, x_{3}=3 / 2$. Note: since the entry in the z row and x_{1} column is 0 , this is not the only optimal solution.
(b). This is slightly embarassing. When this question was originally used on a midterm, the method we were using was slightly different: there was no artificial variable a_{0}, and the "first" pivot was equivalent to our second pivot, resulting in a bfs with $z=-1$. So the answer then was that the optimal value of the objective is at least -1 . Our first pivot does not result in a bfs for the original problem, so we can't conclude anything yet about the optimal solution.
(c). If you changed the right side of the first constraint from -2 to -1 , or the right side of the second or third constraint to -2 , the result of our first pivot would be degenerate, i.e. there would be a 0 in the final column in the s_{2} or s_{3} row. (Note in the case of the third constraint that making this -2 would cause you to put a -1 in the a_{0} column for this constraint)
2.(a). With $\mathbf{b}=\left[\begin{array}{c}9 \\ t+18 \\ 1\end{array}\right]$, we would have $\beta=\mathbf{B}^{-1} \mathbf{b}=\left[\begin{array}{c}1 \\ 3+t \\ 1\end{array}\right]$. This would be feasible, so this basis would give the optimal solution, if $t \geq-3$.
(b). With the new $\mathbf{c}^{T}=[1,8,1,3]$, we would have $\mathbf{c}_{B V}^{T}=[1,0,8], \pi^{T}=\mathbf{c}_{B V}^{T} \mathbf{B}^{-1}=[1,0,0]$, $\bar{c}_{3}=\pi^{T}\left[\begin{array}{c}1 \\ -3 \\ 1\end{array}\right]-1=0$ and $\bar{c}_{4}=\pi^{T}\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right]-3=-1$. It would not be optimal, and x_{4} would enter the basis. The rest of the x_{4} column of the tableau would have $\mathbf{B}^{-1}\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right]=\left[\begin{array}{c}-14 \\ 15 \\ 2\end{array}\right]$, while $\beta=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$ (either calculated as $\mathbf{B}^{-1} \mathbf{b}$, or taken from (a) with $t=0$). The ratios are $3 / 15=1 / 5$ for s_{2} and $1 / 2$ for x_{2}. The minimum ratio is $1 / 5$, so s_{2} would leave the basis.
3. We detect that in Phase II by finding a tableau where a variable x_{e} should enter the basis (it is not artificial, and has a negative entry in the z row or is URS and has a nonzero entry in the z row) but there is no variable to leave the basis (there are no ratios to calculate: if the entry for x_{e} in the z row is negative, there are no positive entries in the x_{e} column in rows labelled by non-URS variables; or if x_{e} is URS and its entry in the z row is positive, there are no negative entries in the x_{e} column in rows labelled by non-URS variables). Since we are in Phase II, we have a basic feasible solution. A negative entry in the z row means that increasing the value of this x_{e}, keeping the other nonbasic variables at 0 , will increase the value of the objective z. The lack of positive entries in the column means that doing this will not decrease the value of any of the non-URS basic variables, and so will never cause the solution to become infeasible. Thus arbitrarily large increases in the z value are possible. Similarly if x_{e} is URS and its entry in the z row is positive, decreasing the value of x_{e} will increase z, and the lack of negative entries in the column means that doing this will not decrease the value of any non-URS basic variables.
(To reduce complications, I probably should have stated in this problem that you could assume there were no URS variables.)

