M ath 340
 Sample First Midterm

[12 points] $\mathbf{1 (a)}$ Solve the following linear programming problem, using the methods studied in class:

$$
\begin{array}{rlrl}
\operatorname{maximize} & & x_{1}+3 x_{2}-x_{3} & \\
\text { subject to } & & 2 x_{2}-2 x_{3} & \leq-2 \\
& -x_{1}-2 x_{3} & \leq-1 \\
x_{1}+x_{2} \quad+x_{3} & \leq 2 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

[4 points] (b) What does the result of the first pivot allow you to conclude about the value of the objective in an optimal solution?
[4 points] (c) How could you change one number in this problem so that the result of the first pivot would be a degenerate tableau?

2. Consider the problem

$$
\begin{array}{rc}
\operatorname{maximize} & x_{1}+9 x_{2} \quad+x_{3}+2 x_{4} \\
\text { subject to } & x_{1}+8 x_{2}+x_{3}+2 x_{4} \leq 9 \\
& 3 x_{1}+12 x_{2}-3 x_{3}-3 x_{4} \leq 18 \\
x_{2} \quad+x_{3}+2 x_{4} \leq 1 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

An optimal solution is found with basis x_{1}, s_{2}, x_{2} (where s_{2} is the slack variable corresponding to the second constraint), and

$$
\mathbf{B}^{-1}=\begin{gathered}
x_{1} \\
s_{2} \\
x_{2}
\end{gathered} \quad\left(\begin{array}{ccc}
1 & 0 & -8 \\
-3 & 1 & 12 \\
0 & 0 & 1
\end{array}\right)
$$

[6 points] (a) For what values of the parameter t would this basis give the optimal solution, if we changed the right hand side of the second constraint to $t+18$?
[7 points] (b) Suppose (with the original b), the objective was changed to: maximize $x_{1}+8 x_{2}+x_{3}+3 x_{4}$. Would the optimal solution change? If a pivot is necessary, which variables would enter and leave the basis?
[7 points] 3. Suppose a linear programming problem P is unbounded. How would that fact be detected in the Simplex Method? Explain carefully why we know that P is unbounded when this occurs.

