
Computational Complexity

This is to give some background to the question, “How fast can Linear
Programming problems be solved?”, and its relation to the central ques-
tion of computational complexity theory, “Is P = NP ?”. This will be a
somewhat informal discussion, leaving out some of the messy details.

The theory mainly deals with decision problems. A decision problem
is a question with a yes-or-no answer, depending on some variables. An
example of a decision problem is:

Given positive integers x and y, is x divisible by y?

This decision problem can be solved rather efficiently by a algorithm:
long division. We’re interested in how many steps such an algorithm might
take. Of course the number of steps needed is likely to depend on the
inputs. In particular, larger and more complicated inputs tend to require
more steps. The size of the input might be measured by the number of
bytes used to write it. An algorithm is said to be “polynomial-time” if
there are constants c and d such that on every acceptable input of size n

the algorithm stops after at most cnd steps. Long division is an example
of a polynomial-time algorithm (with d = 2). From the theoretical point of
view, a polynomial-time algorithm is considered “fast” and anything that’s
not polynomial-time is “slow”. P is the class of decision problems for which
polynomial-time algorithms exist. So basically problems in P are considered
tractable and those not in P are intractable. Depending on the values of
the constants, a non-polynomial-time algorithm might be competitive with
a polynomial-time algorithm for some small n’s, but if you try larger and
larger values of n the polynomial-time algorithm will eventually win.

For example, contrast a polynomial-time algorithm A that takes up to
c1n

3 steps with a non-polynomial-time algorithm B that takes c22
n steps

on a problem of size n. Suppose you’ve been solving problems of a certain
size n on your computer, and it takes up to an hour. Now you trade in
the computer for a newer model that is twice as fast, so it can do twice
as many steps in an hour. How does this affect the size of problems you
can handle in an hour? For the polynomial-time algorithm A, you could
increase n by a substantial amount, about 25% (1.253 < 2). But for the
non-polynomial-time algorithm B, you could only increase n by one byte.

From this theoretical point of view the constants c and d are not im-
portant. In practice they are: we wouldn’t get very far with an algorithm
that took 101000n1000 steps. But in practice, most problems that are known



to be in the class P turn out to have algorithms with small enough values
of c and d that quite substantial problems can be solved in a reasonable
length of time. That’s not the case for many problems that are not in P .

It’s also important to note that we’re dealing with “worst-case” sce-
narios. You might have an algorithm that works very quickly for nearly all
of the possible inputs of size n, but a very small fraction of those inputs
take a very long time. Such an algorithm could be very useful in practice,
despite not being polynomial-time. In fact, the Simplex Method falls in
this category. The Klee-Minty examples show that the Simplex Method is
not a polynomial-time algorithm, but usually it seems to work quite well.

The other important class of problems is NP . These are decision prob-
lems where a “yes” answer can always be verified by a polynomial-time al-
gorithm, given some extra information. For example, consider the problem

Given positive integer x, is x a composite number (i.e. is it divisible by
some positive integer other than x and 1)?

For any positive integer y with 1 < y < x, we have a polynomial-
time algorithm (long division) to check whether x is divisible by y. If x is
composite, then given the correct y we can quickly verify the fact that x

is composite. So this problem is in NP . On the other hand, finding the
factor y seems to be a hard problem: no polynomial-time algorithm for that
is known. Notice that we don’t require a verification for a “no” answer.

Every problem in P is in NP : you just throw away any extra infor-
mation, and run the polynomial-time algorithm. The big question is, is
P = NP , i.e. do the problems in NP all have polynomial-time algorithms?
The question has been open since about 1971 when it was formulated by
Stephen Cook of University of Toronto. Most (but not all) experts think
the answer is no, but we don’t have a proof. If you can answer this question
(with a proof), you’ll become extremely famous, in addition to collecting a
$1 million prize.

There are certain problems that are, in a sense, the hardest problems
in NP . These are called NP -complete. A problem A is NP -complete if
every problem B in NP can be transformed into an example of problem
A, in such a way that if you had a polynomial-time algorithm for problem
A you could use it to solve problem B in polynomial time. So if even one
NP -complete problem is in P , it would mean that P = NP . Thousands of
problems have been shown to be NP -complete since 1971. One example is
the Subset Sum Problem:



Given a finite set S = {s1, . . . , sn} of integers, is there a nonempty
subset of S whose sum is 0?

If you had a polynomial-time algorithm for this problem, you could use
it to solve every NP problem in polynomial time.

Why is this important? For one thing, the cryptographic methods
which are used for most communications security these days are based on
the idea that certain problems are difficult to solve. If you had an efficient
algorithm for an NP -complete problem, you could break most of the world’s
codes.

Now Linear Programming is an optimization problem rather than a
decision problem, but the two are closely related. For each optimization
problem

Maximize f(x1, . . . , xn) subject to a set C of constraints
there is a related decision problem

Given y, does there exist (x1, ..., xn) such that f(x1, . . . , xn) >= y and
the constraints C are satisfied?

So if I say that an optimization problem is in P or NP or NP -complete,
what it means is that the decision problem is in that class.

Now Linear Programming is in NP . The extra information you could
use to verify a “yes” answer is a set of basic variables for an optimal tableau
(or a tableau that shows the problem is unbounded). This was already
known when the P = NP question was formulated.

On the other hand, Integer Linear Programming, where the variable
values are required to be integers, is NP -complete. For example, the Sub-
set Sum Problem can be formulated as an Integer Linear Programming
problem:

maximize
n∑

j=1

sjxj

subject to
n∑

j=1

sjxj ≤ 0

all xj ∈ {0, 1}

So if there was a polynomial-time algorithm for Integer Linear Pro-
gramming, you could solve Subset Sum in polynomial time, and you’d have
P = NP . But Integer Linear Programming is not Linear Programming.



This is how matters stood for some years: Linear Programming was
known to be in NP , but was not known to be in P , and on the other hand
it was not known to be NP -complete. The Simplex Method was not a
polynomial-time algorithm, but nothing better was known.

Then in 1979 came a breakthrough: in Moscow, Leonid Khachiyan
discovered a polynomial-time algorithm for Linear Programming, called the
Ellipsoid Algorithm. It created quite a stir at the time, helped to some
degree by newspaper accounts that, as often happens, missed the point
completely: they seemed to say that he had solved the Traveling Salesman
Problem, which is NP -complete. When I read that, I immediately knew
that it couldn’t be right. This was the height of the Cold War, and the
government of the Soviet Union would never have allowed a polynomial-
time algorithm for NP -complete problems to be published: they’d keep it
secret and use it to break all the West’s codes. Of course it wasn’t that
at all, it was just for Linear Programming, which nobody had ever claimed
was NP -complete.

It turned out that, although it made Linear Programming tractable in
principle, in practice Khachiyan’s algorithm was not useful. It was much
worse than the Simplex Method on typical problems. But this did leave
open the possibility that a more practical polynomial-time algorithm might
be found. And that’s what happened in 1984, when Narendra Karmarkar
at Bell Labs found a new polynomial-time algorithm, called Karmarkar’s
Algorithm. This one was good both in theory and in practice, and could
compete with the Simplex Method on typical problems of moderate size
(100 variables or so). Since 1984 there has been a lot of work developing
“interior point methods” for linear programming and other convex opti-
mization problems.


