Parametric programming for an objective coefficient

Consider the following problem:
maximize $z=20 x_{1}+30 x_{2}+14 x_{3}$
subject to $\quad 3 / 2 x_{1}+x_{2}+x_{3} \leq 100$
$x_{1}+2 x_{2}+x_{3} \leq 100$
$x_{1}+x_{2}+3 x_{3} \quad \leq 120$
$x_{1}, x_{2}, x_{3} \geq 0$
Here is the optimal tableau:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs									
1	0	0	$7 / 2$	5	$25 / 2$	0	1750	$=$	z							
0	1	0	$1 / 2$	1	$-1 / 2$	0	50	$=$	x_{1}							
0	0	1	$1 / 4$	$-1 / 2$	$3 / 4$	0	25	$=$	x_{2}							
0	0	0	$9 / 4$	$-1 / 2$	$-1 / 4$	1	45	$=$	s_{3}							

Suppose we change the coefficient of x_{1} in the objective: instead of 20 it will be $20+\varepsilon$.

The new z is the old $z+\varepsilon x_{1}$. So the new z row is obtained by adding ε times the x_{1} row (except for the entry in the x_{1} column) to the z row:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	0	$\begin{array}{r} 7 / 2 \\ +\varepsilon / 2 \end{array}$	$\begin{array}{r} 5 \\ +\varepsilon \end{array}$	$\begin{gathered} \hline 25 / 2 \\ -\varepsilon / 2 \end{gathered}$	0	$\begin{gathered} 1750 \\ +50 \varepsilon \end{gathered}$	=	z
0	1	0	1/2	1	-1/2	0	50	$=$	x_{1}
0	0	1	1/4	-1/2	3/4	0	25	$=$	x_{2}
0	0	0	9/4	-1/2	$-1 / 4$	1	45	=	s_{3}

This tableau is optimal as long as the entries in the z row for nonbasic variables remain ≥ 0 :

$$
\begin{array}{ccc}
7 / 2+\varepsilon / 2 \geq 0 & \text { i.e. } & \varepsilon \geq-7 \\
5+\varepsilon \geq 0 & \text { i.e. } & \varepsilon \geq-5 \\
25 / 2-\varepsilon / 2 \geq 0 & \text { i.e. } & \varepsilon \leq 25
\end{array}
$$

Thus the interval is $-5 \leq \varepsilon \leq 25$. If $\varepsilon>25$, s_{2} would enter the basis and x_{2} would leave, resulting in the following tableau:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	$\begin{aligned} & \hline-50 / 3 \\ & +2 \varepsilon / 3 \end{aligned}$	$\begin{array}{r} -2 / 3 \\ +2 \varepsilon / 3 \end{array}$	$\begin{array}{r} 40 / 3 \\ +2 \varepsilon / 3 \end{array}$	0	0	$\begin{array}{r} 4000 / 3 \\ +200 \varepsilon / 3 \end{array}$	-	z
0	1	$2 / 3$	$2 / 3$	$2 / 3$	0	0	200/3		x_{1}
0	0	$4 / 3$	$1 / 3$	-2/3	1	0	100/3	=	s_{2}
0	0	$1 / 3$	7/3	$-2 / 3$	0	1	160/3	$=$	s_{3}

This is optimal if $\varepsilon \geq 25$.

Returning to the previous tableau, if $\varepsilon<-5, s_{1}$ would enter and x_{1} would leave, resulting in the tableau:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	$-5-\varepsilon$	0	1	0	15	0	1500	$=$	z
0	1	0	$1 / 2$	1	$-1 / 2$	0	50	$=$	s_{1}
0	$1 / 2$	1	$1 / 2$	0	$1 / 2$	0	50	$=$	x_{2}
0	$1 / 2$	0	$5 / 2$	0	$-1 / 2$	1	70	$=$	s_{3}

If we graph the optimal value of the objective as a function of the objective coefficient c_{1} of x_{1}, it looks like this:

