Parametric programming for an objective coefficient

Consider the following problem:

 $\begin{array}{lll} \mbox{maximize} & z = 20x_1 + 30x_2 + 14x_3 \\ \mbox{subject to} & 3/2\,x_1 + x_2 + x_3 & \leq 100 \\ & x_1 + 2x_2 + x_3 & \leq 100 \\ & x_1 + x_2 + 3x_3 & \leq 120 \\ & x_1, x_2, x_3 \geq 0 \end{array}$

Here is the optimal tableau:

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	0	7/2	5	25/2	0	1750	=	z
0	1	0	1/2	1	-1/2	0	50	=	x_1
0	0	1	1/4	-1/2	3/4	0	25	=	x_2
0	0	0	9/4	-1/2	-1/4	1	45	=	s_3

Suppose we change the coefficient of x_1 in the objective: instead of 20 it will be $20 + \varepsilon$.

The new z is the old $z + \varepsilon x_1$. So the new z row is obtained by adding ε times the x_1 row (except for the entry in the x_1 column) to the z row:

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	0	7/2	5	25/2	0	1750	=	z
			$+\varepsilon/2$	$+\varepsilon$	$-\varepsilon/2$		$+50\varepsilon$		
0	1	0	1/2	1	-1/2	0	50	=	x_1
0 0	1 0	$\begin{array}{c} 0 \\ 1 \end{array}$	$1/2 \\ 1/4$	$1 \\ -1/2$	$-1/2 \\ 3/4$	0 0	$50 \\ 25$	=	$egin{array}{c} x_1 \ x_2 \end{array}$

This tableau is optimal as long as the entries in the z row for nonbasic variables remain ≥ 0 :

$$\begin{array}{ll} 7/2 + \varepsilon/2 \geq 0 & \text{i.e.} & \varepsilon \geq -7 \\ 5 + \varepsilon \geq 0 & \text{i.e.} & \varepsilon \geq -5 \\ 25/2 - \varepsilon/2 \geq 0 & \text{i.e.} & \varepsilon \leq 25 \end{array}$$

Thus the interval is $-5 \le \varepsilon \le 25$. If $\varepsilon > 25$, s_2 would enter the basis and x_2 would leave, resulting in the following tableau:

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	-50/3	-2/3	40/3	0	0	4000/3	=	z
		$+2\varepsilon/3$	$+2\varepsilon/3$	$+2\varepsilon/3$			$+200\varepsilon/3$		
0	1	2/3	2/3	2/3	0	0	200/3	=	x_1
0 0	$\begin{array}{c} 1 \\ 0 \end{array}$	$2/3 \\ 4/3$	$2/3 \\ 1/3$	$2/3 \\ -2/3$	$\begin{array}{c} 0 \\ 1 \end{array}$	0 0	$200/3 \\ 100/3$	=	$x_1 \\ s_2$

This is optimal if $\varepsilon \geq 25$.

Returning to the previous tableau, if $\varepsilon < -5$, s_1 would enter and x_1 would leave, resulting in the tableau:

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	$-5-\varepsilon$	0	1	0	15	0	1500	=	z
0	1	0	1/2	1	-1/2	0	50	=	s_1
0	1/2	1	1/2	0	1/2	0	50	=	x_2
0	1/2	0	5/2	0	-1/2	1	70	=	s_3

If we graph the optimal value of the objective as a function of the objective coefficient c_1 of x_1 , it looks like this:

