Newton's Method

Newton's Method in general is an iterative method for approximately solving systems of equations. In this case we use it to find critical points. Suppose we want to find a critical point of a function $f\left(x_{1}, \ldots, x_{n}\right)$. That is, we want to find a point \mathbf{x} where the gradient $\nabla f(\mathbf{x})=0$. Let $H(\mathbf{x})$ be the Hessian matrix of f at \mathbf{x}. Then Newton's method is the iteration

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-H\left(\mathbf{x}_{k}\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)
$$

Here \mathbf{x}_{k} and $\nabla f\left(\mathbf{x}_{k}\right)$ are considered as column vectors. We start out at an initial guess \mathbf{x}_{0}, and use this formula to compute $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$. If we made a good initial guess, these will converge rapidly towards a solution. We stop when we think we are close enough to the solution (typically signalled by the fact that we have very little change from one iteration to the next).

Example:
$f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}+x_{1} x_{2}^{2}$.
$\nabla f\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}^{2}, 1+2 x_{1} x_{2}\right)$.
$H\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}2 & 2 x_{2} \\ 2 x_{2} & 2 x_{1}\end{array}\right)$.
Suppose we start with $\mathbf{x}_{0}=(1,0): \nabla f\left(\mathbf{x}_{0}\right)=(2,1)$ and $H\left(\mathbf{x}_{0}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ so $H\left(\mathbf{x}_{0}\right)^{-1}=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$ and

$$
\mathbf{x}_{1}=\binom{1}{0}-\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)\binom{2}{1}=\binom{0}{-1 / 2}
$$

For the next iteration, $\nabla f\left(\mathbf{x}_{1}\right)=(1 / 4,1), H\left(\mathbf{x}_{1}\right)=\left(\begin{array}{cc}2 & -1 \\ -1 & 0\end{array}\right)$ so $H\left(\mathbf{x}_{1}\right)^{-1}=$ $\left(\begin{array}{cc}0 & -1 \\ -1 & -2\end{array}\right)$ and

$$
\mathbf{x}_{2}=\binom{0}{-1 / 2}-\left(\begin{array}{cc}
0 & -1 \\
-1 & -2
\end{array}\right)\binom{1 / 4}{1}=\binom{1}{7 / 4}
$$

So far there's not much sign of convergence. However, if we persevere:

$$
\begin{aligned}
& \mathbf{x}_{3}=(0.3181818182,0.693181818) \\
& \mathbf{x}_{4}=(-1.664298114,2.747545566) \\
& \mathbf{x}_{5}=(-0.8309365361,1.676201448) \\
& \mathbf{x}_{6}=(-0.5508510643,1.166731310) \\
& \mathbf{x}_{7}=(-0.5011690966,1.012915366)
\end{aligned}
$$

Now maybe we're getting somewhere: this is not very far from \mathbf{x}_{6}. In fact, convergence now becomes very rapid:

$$
\begin{aligned}
\mathbf{x}_{8} & =(-0.4999826445,1.000065205) \\
\mathbf{x}_{9} & =(-0.4999999984,1.000000001) \\
\mathbf{x}_{10} & =(-0.5,1.0)
\end{aligned}
$$

(to more than 10 decimal places accuracy). So it looks like we have found our critical point: $(-1 / 2,1)$.

