
This chapter contains detailed information on every command of LINEAR.

File

The Files menu is

Load Edit Record Save Path

It is reached from the main menu by choosing `File'. The ¯rst menu you see on starting LINEAR
with nothing else on the command line is a modi¯ed version of this, with no `Save' (because
there is nothing to save yet) but additional choices `Options' and `Quit'.

File

Load

This loads a ¯le into memory. You have a choice:

load Problem Tab Dif

These are the three types of ¯le that LINEAR can load. Problem ¯les are text ¯les stating
the problem. TAB ¯les are binary ¯les produced by the `Save' command, containing an exact
image of the state of the problem in memory. DIF ¯les are mainly used to communicate with
spreadsheet programs. Chapter 3 explains how to set up a problem ¯le or a DIF ¯le to be
loaded.

After choosing the type of ¯le, enter the name of the ¯le (see the section Selecting ¯les in
Chapter 4).

You can enter a problem ¯le directly from the keyboard. To do this, enter `con:' when asked
for the name of the ¯le, and then type in the problem.

Once the ¯le you specify has been found, LINEAR signals `Loading (name of ¯le)', and when
loading is complete `Loaded (name of ¯le)' and the amount of free memory remaining. You are
then returned to the main menu. The (not solved) indicator appears on the bottom line to
remind you to use `Solve' (except in the case of a TAB ¯le which was saved after the problem
was solved).

The only `Options' setting that is a®ected by `Load' is `Maximize' or `Minimize'. The others
remain as they were.

5-1

File

Edit

This temporarily exits from LINEAR, edits a problem ¯le using the text editor of your choice,
and returns to LINEAR, loading that problem ¯le. To use this, LINEAR must be invoked using
the batch ¯le LIN.BAT rather than directly from DOS (see the section Batch ¯les and editing
in Chapter 4). First you are asked the name of the ¯le to edit (see the section Selecting ¯les in
Chapter 4). If you have not speci¯ed the name of an editor in the con¯guration ¯le LINEAR.CFG
or in the `Options' menu, you are also asked for the name of the editor.

Note that when LINEAR returns after the editor is ¯nished, it does so with a \blank slate" as
if it had just been invoked from the command line | any `Options' that had been set before
editing will not be remembered, and recording will not be active.

File

Record

This starts or stops sending data to a disk ¯le as well as writing it to the screen. First it will
ask you for the name of the output ¯le (see the section Selecting ¯les in Chapter 4). Once
the ¯le is selected, any further output (with a few exceptions, as noted below) from LINEAR's
commands will be sent to the ¯le as well as to the screen. This will continue until you choose
`Record' again or exit from LINEAR with `Quit Exit'. Do not remove the disk (if you are
recording to a °oppy disk) or turn o® the computer until you have done one of those, or some
data may be lost. Of course, there must be su±cient room on the disk for the data you wish to
record.

Thus to make a ¯le containing the values of the basic variables, you could use the following
sequence: `Record', name of the ¯le, `Values Variables Record'.

If the output ¯le you choose already exists, you will have a choice:

file exists Append Rewrite Try another

Append will cause new output to be added at the end of the current contents of the ¯le.

Rewrite will cause the original ¯le to be erased, and a new ¯le prepared for output.

Try another brings you back to the beginning of `Record', leaving the original ¯le intact, so that you can
choose another ¯le name.

A letter `R' on the bottom line indicates when recording is active.

Menus are not sent to the output ¯le. If `Headers' is OFF (this is set by the `Options'
command), LINEAR does not send \header lines" such as `Values of basic variables' (in
`Values Variables'), or other items that precede actual data, to the ¯le. This is useful if you
intend to use the ¯le produced by `Record' as input for a database program. `Headers' a®ects
recording for the commands `Analyze', `Tableau Show tableau', and `Values'.

When all the data you want is in the ¯le, go back to `Record'. This will automatically \close"
your ¯le, which means that it is safe to remove a °oppy disk containing that ¯le. Your ¯le is
also closed if you end the program with `Quit Exit'. You are asked

record to file? Yes No

5-2

No will cause the output to go only to the screen, as is the case initially.

Yes will proceed in the same way as the ¯rst time you chose `Record'. Note that if you want to
continue recording to the same ¯le (e.g. if you chose `Record' again accidentally), you should
choose the same ¯le name as before (it will be the default) and then `Append'.

Instead of a disk ¯le, you can send the output to a parallel printer by entering `prn:' or `lpt1:'
as the ¯le name, or to a serial port by entering `aux:' or 'com1:'.

You can also echo screen output to LPT1 by using Ctrl PrtSc or setting `Printing' ON
in `Options'. This di®ers from `Record' in that `Headers' has no e®ect. Everything except
menus will be sent to the printer. A letter `P' on the bottom line indicates when printing is on.

File

Save

This allows you to save the current state of the problem into a ¯le.

You ¯rst choose the type of ¯le to save: `Tab' or `Dif'. A TAB ¯le is the best choice if you
intend to `Load' this ¯le later on, while DIF ¯les are useful for communicating with spreadsheet
programs. Next you enter the name of the ¯le (see the section Selecting ¯les in Chapter 4).

If the ¯le you specify already exists, you are given the choice of `Rewrite' or `Try another'.

Rewrite will cause the original ¯le to be erased, and a new ¯le prepared for output.

Try another leaves the original ¯le intact and lets you choose another ¯le name.

When saving is complete, LINEAR writes `Saved (name of ¯le)' and returns to the main menu.

The only `Options' setting that is saved is `Maximize' or `Minimize' (the others are part of
the state of the machine, not of the problem itself).

File

Path

This shows and changes the default drive and current directory.

² You are asked for the drive, with the default drive in brackets. Enter the letter of the drive you
wish, or just press Ã to keep this drive.

² You are asked for the directory, with the current directory on the default drive shown in brackets.
Specify the directory you wish (as you would in the CHDIR or CD command in DOS, not

including the drive), or just press Ã to make no changes. For example, `\' changes to the root
directory, `junk' changes to a subdirectory `junk' of the current directory, and `..' changes to
the parent of the current directory.

5-3

Solve

This solves the linear programming problem, using the simplex method (see Chapter 2 and
Appendix A). When the solution has been found, or the problem has been found to be infeasible
or unbounded, a message appears on the screen with the number of pivots and (if the conclusion
was an optimal solution) the optimal value of the objective function.

In some problems there may be a very large number of degenerate pivots, and even the possibility
of cycling. Degenerate pivots are indicated as such if `Show pivots' is ON. If necessary, you

can interrupt `Solve' by pressing Ctrl Break . Use `Change Add Perturbation' to remove
the degeneracy before solving the problem. After the problem is solved, you are given the
opportunity to remove the perturbation, restoring the original problem.

See the `Options' command for three settings which a®ect the operation of `Solve':
`Maximize/Minimize', `Show pivots' and `Keep artificials'.

Values

This command shows you the following menu:

Variables Shadow prices Ranging Accuracy

Values

Variables

This command lists the objective function and all the basic variables with their values in the
current basic solution. Slack variables are indicated with `SLACK' and the name of the constraint,
arti¯cial variables with `ARTIF' and the name of the constraint. The objective function is listed
¯rst, followed by the decision variables in the order in which they were declared, followed by the
slack and arti¯cial variables in the order of the corresponding constraints (this order may change,
however, if you use the `Change Objective' or `Change Delete Constraint' commands).
Any variable that is not listed and has not been deleted is nonbasic, and therefore has the value
0.

Values

Shadow prices

This command lists the shadow prices of all variables, including slack and arti¯cial variables, in
the current basic solution. See the section `Sensitivity analysis' in Chapter 2 for how to interpret
this information. Slack variables are indicated with `SLACK' and the name of the constraint,
arti¯cial variables with `ARTIF' and the name of the constraint. The decision variables are listed
¯rst, in the order in which they were declared, followed by the slack and arti¯cial variables in the
order of the corresponding constraints (this order may change, however, if you use the `Change
Objective' command).

Arti¯cial variables which have left the basis while the `Keep artificials' option was OFF, and
slack or arti¯cial variables for deleted constraints, will not be shown. Otherwise, any variable
that is not listed is basic.

5-4

Values

Ranging

A menu gives you a choice between two types of ranging:

ranging: Objective Rhs

Objective ranging tells how the coe±cients of each decision variable in the objective function can vary
with the current solution remaining optimal. All the decision variables are listed, in the order in
which they were declared (this order may change, however, if you use the `Change Objective'
command).

For example, one line of the output of this command might be

X1 1.0000 2.0000 3.2000

The middle value 2.0000 is the coe±cient of X1 in the objective function. If this coe±cient were
replaced by any number between 1.0000 and 3.2000, the current solution would remain optimal.
Only the value of the objective function would change.

The assumption is always that the current solution is indeed optimal, and that only one
coe±cient at a time is to be changed.

Rhs (or `Right-hand-side') ranging tells how the constant terms of each constraint can change with
the current basis remaining optimal. All the constraints are listed, in the order in which they
appeared (this order may change, however, if you use the `Change Objective' command).
For any equality constraint whose arti¯cial variable has left the basis while the option `Keep

artificials' was OFF, this information will be unavailable, with the numbers replaced by
`???'.

For example, suppose one constraint of the problem was

3 x1 - 4 x7 <= 5 [m1];

The corresponding line of output from this command might be

M1 3.0000 5.0000 6.0000

This would indicate that the same basis would be optimal if the constraint were `3 x1 - 4 x7

<= t', where t is anything from 3 to 6. Changing t within this interval could change the values
of the objective function and basic variables, but the basic or nonbasic status of the variables
would stay the same. Moreover, the shadow price of this constraint would be the e®ect on the
objective value per unit of change in t within this interval. For changes outside the interval, the
shadow price would no longer be valid.

5-5

Values

Accuracy

This provides a check on the numerical accuracy of the current solution. This is especially useful
when a large number of pivots has taken place. `Accuracy' works by reading the problem ¯le
again and checking the objective and each constraint against the current tableau. It will only
work for a problem that exists in the form of a problem ¯le, not a DIF ¯le.

You are asked for the name of the problem ¯le: specify the same ¯le that was originally used to
load the problem. The ¯le is read in. In each row (objective or constraint), every basic variable
is expressed in terms of the nonbasic variables as in the current tableau, and the equation is
checked to see how well it balances. The name of the objective or constraint, the error in the
right-hand-side (i.e. constant term) and the maximum error in the coe±cients of variables are
listed. Any error less than 10¡10 is listed as 0:0.

For example, suppose that a constraint of the problem was

2 X1 + 3 X2 <= 7

which, by including a slack variable called C_1, becomes 2X1 + 3X2 + C1 = 7.

Suppose further that in the current tableau, X2 and C_1 are basic, with rows of this tableau
corresponding to equations

X2 = 1:3¡ 2:1X1 + 0:3X3

C1 = 3 + 4:35X1 ¡ 0:99X3

Substituting these in, 2X1 + 3X2 + C1 = 6:9 + 0:05X1 ¡ 0:09X3 (instead of 7). This would be
reported as `RHS error' of 0.1 and `Max coeff error' of 0.09.

Analyze

This performs parametric sensitivity analysis on a variable (see Chapter 2). It assumes that an
optimal solution to the problem has already been found.

You are ¯rst asked for the name of the variable or constraint to analyze. If this is a decision
variable, you have the choice of two types of analysis: `Objective' and `As parameter'. If it
is a constraint, there is the additional choice `Rhs'.

Objective analysis considers what happens to the optimal solution when you change the coe±cient in the
objective of the variable being analyzed.

As parameter analysis considers what happens to the optimal solution when you treat the variable being
analyzed as a parameter (rhs parameter) which can be assigned ¯xed values.

Rhs analysis considers what happens to the optimal solution when you vary the right-hand-side of
the constraint being analyzed.

In all three types of analysis, you are shown information about the variable or constraint and
the interval of change in which the current basis is optimal. Your menu choices include pivoting
to an adjacent interval. By repeated pivoting, you can explore all the intervals. After some
pivoting in Analyze, the tableau will no longer be optimal for the original problem. The (not

solved) indicator comes on when you leave Analyze, reminding you to restore the optimal
solution with Solve before doing anything else (e.g. analyzing another variable). You can not
have more than one parameter varying at the same time.

5-6

Analyze

Objective

This considers what happens to the optimal solution when you change the contribution to the
objective of the variable (say X) being analyzed. It is usually done for decision variables, but
can also be done for slack variables.

² If X is basic, you are given its actual contribution to the objective, its current value, and the
interval of contributions within which the current basic solution is optimal, with the values of the
objective function at the endpoints of that interval. Since the solution does not change within
the interval, the change in the objective value is due solely to the new coe±cient multiplying
the current value of X. The menu shows

pivot Higher pivot Lower values Up values Down Shadow prices

If an endpoint of the interval is §1, i.e. the variable is at its maximum or minimum feasible
value, the corresponding `pivot' and `values' items will not be present.

pivot Higher pivots to the next interval in the direction that increases X (increasing the objective contribution
in a maximization problem, or decreasing it in a minimization problem). You are told which
variables enter and leave the basis, the new value of X, the new coe±cient interval, and the
values of the objective function at the endpoints of that interval. The same menu repeats.

If the problem is unbounded in that interval, no pivot is done, and you are told `No limit to

increase'.

pivot Lower pivots to the next interval in the direction that decreases X (decreasing the objective contribution
in a maximization problem, or increasing it in a minimization problem). You are told which
variables enter and leave the basis, the new value of X, the new interval, and the values of the
objective function at the endpoints of that interval. The same menu repeats.

If the problem is unbounded in that interval, no pivot is done, and you are told `No limit to

decrease'.

values Up shows what happens if X is forced to increase, i.e. if X ¸ r is required, where r is in the
interval between the current value of X and the value it would have if you chose `pivot Higher'.
Within this interval, a nonbasic variable (the same one that would enter in `pivot Higher') will
increase, and X and the other basic variables will change accordingly. Each of these variables is
listed (¯rst X, then the entering variable, then the other basic variables in order), with `low' (the
value at the current solution), `high' (the value at the end of the interval), and `coefficient'
(the amount of change in that variable per unit increase of X).

values Down is analogous, with X forced to decrease.

Shadow prices shows how the shadow prices of the nonbasic variables depend on the contribution of X within
the current interval. For example, some of the output might be as follows:

Dependence of shadow prices on contribution of X

At contribution:

4.5000 27.0000 Coefficient

Z 12.2958 12.2958 0.0

V 9.0000 0.0 -0.4000

5-7

The column headed 4:5000 shows the shadow prices when the contribution of X is 4:5000, the low
endpoint of the current interval. The next column does the same for 27:0000, the high endpoint
of the interval. The last column shows the change in each shadow price per unit increase in the
contribution of X.

² If X is nonbasic, you are given the shadow price rather than the current value (which is 0).
The ¯rst `pivot Higher' will make X basic. The `Shadow prices' command simply shows
the shadow prices of the nonbasic variables, which (except for X itself) do not depend on the
contribution of X.

In some cases you may want to have an objective parameter multiplying, not just one variable,
but some combination of variables. This can be done by adding a new inequality constraint, as
explained in the section Sensitivity analysis in Chapter 2.

Analyze

As parameter

This considers what happens to the optimal solution when you treat the variable being analyzed
as a parameter (rhs parameter) which can be assigned ¯xed values. It is often done with an
arti¯cial variable.

² If the variable X being analyzed is nonbasic, you are shown the shadow price, the endpoints of
the \parameter interval" of values of X within which the current basis would be optimal, and
the corresponding values of the objective. In this type of analysis X is allowed to take negative
values. The menu shows

pivot Higher pivot Lower Values Shadow prices

pivot Higher pivots to the next interval of values of X, increasing X.

pivot Lower pivots to the next interval of values of X, decreasing X.

These choices will not be present if the interval extends to +1 or ¡1. On a pivot, you are
told which variables enter and leave the basis, and given information about the new interval.

Values shows how the objective and basic variables depend on X in the current interval. For example,
part of the output might be as follows:

Values in interval: low high coefficient

X -3.9803 3.0000 1.0000

OBJECTIVE 59.0789 -26.7495 -12.2958

Y 6.9803 0.0 -1.0000

C_1 1.0789 1.0789 0.0

The `low' column shows the left endpoint of the current interval for X and the values of the
objective function, Y and C 1 at that endpoint. The `high' column does the same for the right
endpoint. The `coefficient' column shows the change in each variable per unit change in X

within the interval.

Shadow prices shows the shadow prices of the nonbasic variables when X is in the current interval. These do
not change within the interval.

5-8

² If X is basic, you are shown its current value and two shadow prices, one for increasing X and
one for decreasing X. The menu shows

pivot Higher pivot Lower values Up values Down Shadow prices

If any of the shadow prices is in¯nite, the corresponding `pivot' and `values' commands will
not be present.

pivot Higher pivots to an interval of values of X extending above the current value. In this pivot, X will leave
the basis. X will remain nonbasic for the rest of the analysis.

pivot Lower does the same, but with an interval extending below the current value.

values Up and values Down are the same as the `Values' command in the nonbasic case, for the intervals
that would be obtained with `pivot Higher' and `pivot Lower' respectively.

Shadow prices is the same as in the nonbasic case.

Analyze

RHS

This considers what happens to the optimal solution when the constant or \right-hand-side"
term of a constraint is changed. For this purpose the constraint is considered as if it had been
written in a \standard form", with ¸ converted to ·. Thus the RHS of each of the following
constraints is 5:

x¡ 5 = y

x¡ 5 · y
y ¸ x¡ 5

First you are told the original value of the RHS of this constraint. Next LINEAR tells you
whether or not the constraint is binding | this means that the slack variable is nonbasic in
the current solution.

² Changing the RHS of a non-binding inequality constraint will only a®ect the slack variable for
that constraint, as long as that slack variable is positive. You are told the interval in which this
is the case, extending from the current value of the \left-hand-side" of the inequality to +1.

pivot Lower pivots to an interval of values of the RHS below the current one, in which the constraint will be
binding.

Values shows the current values of the objective and all basic variables.

Shadow prices shows the current values of the shadow prices of all nonbasic variables.

² If an equality constraint is non-binding in an optimal solution that LINEAR produces, that
equality must be automatically true (implied by other equality constraints). Since changing
the RHS of this constraint would make the problem infeasible, no further analysis can be done.
LINEAR simply signals `Equality constraint still in basis', and `Continue' returns you
to the main menu.

² For a binding constraint, you are given the shadow price of the constraint, the interval of RHS
values for which the current basis is optimal, and the values of the objective corresponding to
the endpoints of this interval.

pivot Higher pivots to the next interval, increasing the RHS, if possible.

5-9

pivot Lower pivots to the next interval, decreasing the RHS, if possible.

Values shows how the objective and basic variables depend on the RHS in the current interval. For
each of these you are shown the values at the two endpoints of the interval and the \coe±cient",
i.e. the change in this variable per unit change in the RHS within the interval.

Change

This allows you to change the current problem, by changing an entry of the tableau, adding or
deleting a variable, constraint or perturbation, or changing objectives. You see the following
menu:

change Entry Objective Add Delete Cut plane

Change

Entry

This command allows you to examine and change an individual entry of the current tableau.

You are asked to identify the entry to alter, entering ¯rst the row name (i.e. the objective name,
or the basic variable corresponding to the row) and then the column (the nonbasic variable,
or `RHS'. The current value of this entry is shown, and you are asked for the new value. To
keep the current value, just press Ã . Before returning to the main menu, you are given the
opportunity to change more entries. The (not solved) indicator reminds you that the current
solution may no longer be optimal, so you should use `Solve' again.

Note that this command acts on the current tableau, not the original formulation. It does not
a®ect the values that `Values Ranging' or `Analyze' use for the objective coe±cients or right-
hand-side entries, which are set when the problem is loaded. `Values Accuracy' will report
\errors", since the current tableau will not correspond to the original problem.

Change

Objective

This command interchanges a row of the tableau with the objective row. You are asked to
identify the row, by its basic variable. For example, suppose the current tableau (arising from
our example EXAMPLE1.PRB) is

x1 m2 x3

p ¡5 15 0 1500

m1 1 ¡0.5 0.5 50
x2 0.5 0.5 0.5 50

`Change Objective' with `M1' changes the tableau to

5-10

x1 m2 x3

m1 1 ¡0.5 0.5 50

p ¡5 15 0 1500
x2 0.5 0.5 0.5 50

This corresponds to a problem in which m1 is the objective, i.e. we wish to maximize the
amount of slack time on machine M1. On the other hand, the original objective p has become
an ordinary variable. Like any variable, it is required to be non-negative, so that in e®ect we
have a constraint that p ¸ 0. Thus the e®ect of this command is to make the speci¯ed variable
the objective function, and the original objective a constraint.

If the original objective is to be maximized, as in the example above, the speci¯ed will be
maximized as well, and the original objective function is required to be ¸ 0. If the original
objective was to be minimized, the new objective is to minimize the negative of the speci¯ed
variable, and the original objective function is required to be · 0.

It is not too likely that you would want to use `Change Objective' alone, but combined with
the other `Change' commands it is a powerful tool for \multi-objective programming". Thus in
our example you might wish to see how much time on machine 1 is required in order to make a
pro¯t of $1000. After changing the objective as above, you could `Change Entry' for P and RHS

to 100, in e®ect changing the constraint p ¸ 0 to p ¸ 1400, and then solve the new problem.

As another example, to switch to a completely new objective q = 5x1 + 3x2 and ignore the old
one, you could do the following:

² `Change Add Constraint' 5 x1 + 3 x2 >= 0 [q];

² `Change Objective' Q

² `Delete Constraint' P

This sequence of commands ¯rst makes a new row of the tableau, with basic variable Q. As slack
variable for the constraint, Q will be de¯ned as 5x1 + 3x2. Then Q is made into the objective,
with the original objective P being made into a constraint. Finally, that constraint is discarded.

The (not solved) indicator reminds you that the current solution may no longer be optimal,
so you should use `Solve' again.

Change

Add

You are given the choice of adding a constraint, a variable, or a perturbation. If a perturbation
has already been added, the last choice is not present.

5-11

Add

Constraint

You are asked to enter a new constraint from the keyboard. The same format is used as in
a problem ¯le (see chapter 3). In particular, you may use arithmetic expressions and any
parameters that were de¯ned in the original problem ¯le. The constraint may extend over any
number of lines | press Ã at the end of each line. End the constraint with a semicolon `;',
as in a problem ¯le.

You may use slack variables as well as original variables in writing your constraint (this is not
allowed in a problem ¯le). Thus if C1 is a slack variable and X a decision variable, it would be
permissible to write `C1 + X > 3;' for the new constraint.

If you examine the tableau after adding a constraint, you may notice that the new row does
not look like what you added. If your new constraint involves basic variables, LINEAR expresses
them in terms of the nonbasic variables when creating the new row.

If LINEAR ¯nds an error in the new constraint you enter, it will inform you about it as usual,
and may display the `Begin skip' message. If the line you entered did not have a semicolon on
it, LINEAR will ignore what you type until it ¯nds a semicolon. Therefore you should ¯rst type
`;'. You may then enter the correct constraint. Note that pressing " will recall the last line
you entered. You may use the cursor keys to go to the beginning of the line, insert the `;', and
correct the mistake you made before pressing Ã .

The (not solved) indicator reminds you that the current solution may no longer be optimal,
so you should use `Solve' again.

Add

Variable

This allows you to add a new variable to the problem.

² LINEAR asks for the name of the new variable. This should follow the usual rules. If you want
the new variable to be arti¯cial, type `*' immediately before the name.

² LINEAR asks for the contribution of the new variable to the objective function. Enter a number.

² LINEAR asks for a constraint involving the new variable. Enter the name of such a constraint.
Then LINEAR asks for the coe±cient of the new variable in this constraint. Enter a number.
This assumes that the constraint is written with variables on the left, and ¸ changed to ·.
Thus if the original constraint was x ¸ 5 and including the new variable y makes it x ¸ 5¡ 2y,
you would enter `-2' (since the constraint in standard form would be ¡x¡ 2y · ¡5).

² The last step is repeated for every constraint that involves the new variable. When all of these
constraints have been done, press Ã in response to `Constraint involving : : :'.

The (not solved) indicator reminds you that the current solution may no longer be optimal,
so you should use `Solve' again.

5-12

Add

Perturbation

This command removes degeneracy from a problem and prevents cycling (see Appendix A). It
should only be used if `Solve' produces a large number of degenerate pivots. A small random
amount is added to each entry of the RHS column. A new nonbasic arti¯cial variable named
&&PERT is added as well, for the purpose of keeping track of these changes through future pivots.
After solving the perturbed problem with `Solve', you will be given the opportunity to remove
the perturbation. This need not be done immediately: you can do it later with `Change Delete

Perturbation'.

This command does not appear on the menu if a perturbation has already been added.

Change

Delete

You are given the choice of deleting a constraint, a variable, or (if `Change Add Perturbation'
has been used) a perturbation. The distinction between deleting a constraint or a variable really
involves the meaning of the word \delete", rather than what is deleted. Deleting a constraint
means removing the requirement imposed by that constraint, i.e. allowing the slack variable to
take positive and negative values. It is accomplished by removing the corresponding row from
the tableau. Deleting a variable, on the other hand, means requiring that variable to be 0, i.e.
making the variable arti¯cial.

Delete

Constraint

You are asked for the name of the constraint to delete. The slack variable for this constraint
must be basic in order for this to work. The corresponding row of the tableau will be deleted,
and the value of the slack variable will no longer be accessible.

² If the slack variable is nonbasic, you must ¯rst use `Tableau Do pivot' to make it basic,
pivoting on any nonzero entry in its column. To ¯nd candidates for such a pivot, you can
use `Analyze As parameter Values' for this slack variable | any variable with a nonzero
\coe±cient" entry can leave the basis on this pivot.

² If you enter the name of a decision variable rather than a constraint, LINEAR will display a
warning message. This is just in case you really intended to use `Delete Variable' instead.

In that case, you should press Esc to return to the main menu. If you choose `Continue'
the row corresponding to this variable is removed from the tableau. The e®ect is to allow the
variable to take both positive and negative values. However, you no longer have access to the
value of this variable.

The (not solved) indicator reminds you that the current solution may no longer be optimal,
so you should use `Solve' again.

5-13

Delete

Variable

You are asked for the name of the variable to delete. All that actually happens is that the
variable is made arti¯cial, i.e. its value is required to be zero. It may still be accessed in the
same way as any other arti¯cial variable. The (not solved) indicator reminds you that the
current solution may no longer be optimal, so you should use `Solve' again.

² If the variable you specify is actually a slack variable, LINEAR displays a warning message. This

is just in case you really wanted to use `Delete Constraint'. In that case, press Esc to
return to the main menu. If you choose `Continue', the e®ect is to make the constraint into an
equality.

Delete

Perturbation

This command only appears on the menu if a perturbation has been added by `Change Add

Perturbation' and has not yet been deleted. You should do this after using `Solve' on the
perturbed problem. It removes the variable &&PERT and changes the RHS column so that the
current basic solution is once again a solution of the original problem. `Solve' gives you the
opportunity to issue this command immediately, but if you prefer you can do it later.

There is a slight possibility that this command will result in a basic solution that is not quite
optimal. To check this, use `Solve' or `Tableau Get candidates'.

Change

Cut plane

This command is for use in integer programming. The problem should be one where you want all
the variables to take integer values (an \all-integer" problem). This includes the slack variables
| if the constraints only involve integers, that will be true automatically when the decision
variables are integers. The objective, on the other hand, may involve non-integer coe±cients.

`Cut plane' uses the method of integer forms to produce a new constraint, known as a
cutting plane, which would be satis¯ed by all integer solutions of the problem, but is not
satis¯ed by the current basic solution. Any basic variable can be used for creating such a
constraint, if its value in the basic solution is not an integer.

You are asked for the basic variable to use in producing the cutting plane. LINEAR ¯nds the
basic variable that would produce the \deepest" cut, i.e. make the perpendicular distance from
the current basic solution to the cutting plane as large as possible. It is shown as the default in
square brackets, along with its value. You may press Ã to use it, or enter the name of another

basic variable. LINEAR adds the new constraint, and tells you its name (`C ' and a number).
The (not solved) indicator reminds you that the current solution is no longer optimal, so you
should use `Solve' again. You may repeat the process until an optimal solution involving only
integers is obtained.

5-14

For example, suppose we start with the following problem:

maximize y + 2z

subject to

x¡ y+2z· 7
3x+2y+ z·12
x+ y ¸ 2

x ¸ 0; y ¸ 0; z ¸ 0

The optimal solution is x = 0, y = 3:4, z = 5:2, for an objective value of 13:8. However, if
we require the variables to be integers this is unacceptable. Therefore we choose `Cut plane',
using the default variable z. Solving the new problem, we obtain a solution with x = 0, y = 3:5,
z = 5, for an objective value of 13:5. Since this solution is still not all integers, we use `Cut
plane' again. This time the solution x = 0, y = 3, z = 5 is all integers, so it is the optimal
all-integer solution for our problem.

In a very small problem such as this one, a few cuts will usually produce an all-integer solution.
In a larger problem it may require a very large number of cuts, so that the method may not be
practical at all.

Tableau

This is a group of commands dealing with the tableau and pivoting. The menu is

Show tableau Do pivot Get candidates

Tableau

Show tableau

This command lets you see some or all of the current tableau, in implicit basis format (see chapter
2). For example, here is how it would show the tableau obtained after loading EXAMPLE1.PRB:

X1 X2 X3 RHS

PROFIT -20.0000 -30.0000 -15.0000 0.0

M1 1.5000 1.0000 1.0000 100.0000

M2 1.0000 2.0000 1.0000 100.0000

² You are asked to choose `Some columns' or All columns'.

Some columns lets you select which columns of the tableau will be shown, and in what order. You
enter the list of columns, pressing Ã after each one. A column is speci¯ed by the name of a

nonbasic variable or `RHS'. When you are done, press Ã again. Up to six columns are displayed
side by side | if more than six are speci¯ed, they are shown in groups of six.

All columns selects all columns of the tableau to display: all nonbasic variables and then the RHS.

² You are asked to choose `Some rows' or All rows'.

Some rows lets you select which rows of the tableau will be shown, and in what order. You enter the
list of rows, just as in `Some columns'. A row is speci¯ed by the name of a basic variable or the
objective.

All rows selects all rows of the tableau to display: ¯rst the objective, then all basic variables.

5-15

Tableau

Do pivot

This allows you to perform a pivot operation of your choice. You are asked to specify the
variables entering and leaving the basis. The entering variable must be nonbasic (but may be
arti¯cial) and the leaving variable must be basic. No pivot is done if the pivot entry is too close
to 0. Otherwise, LINEAR tells you that the pivot was done.

Tableau

Get candidates

This shows you possible candidates for the next pivot to use in solving the problem or obtaining
alternative optimal solutions. The criteria for ¯nding these pivots are related to, but not exactly
the same as, those that `Solve' uses (see Appendix A).

² If there are arti¯cial variables in the basis, you are shown possible pivots leading to their removal
from the basis without making any other variables negative. Each basic arti¯cial variable is tried
as a \target row" for this purpose. If a basic arti¯cial variable can not be removed from the
basis, you are told either `inconsistent constraint' (if it has a nonzero value and therefore
makes the problem infeasible) or `can be ignored' (if its value is automatically zero). The
pivot shown may not immediately remove the arti¯cial variable from the basis, but will make
its value closer to zero.

² If there are no arti¯cial variables that can be removed from the basis, the next priority is
basic variables with negative values. You are shown possible pivots which increase their values
without making any variables become negative that were not already negative. Each negative
basic variable is tried as a \target row" for this purpose. If the value of a negative basic variable
can not be increased, you are told `Can't make feasible'.

² If the current tableau is feasible, LINEAR looks at every non-arti¯cial nonbasic variable with
a negative shadow price. It tries ¯nd a pivot with that nonbasic variable entering the basis,
improving the objective function while maintaining feasibility. If no such pivot is found, you are
told that the problem is unbounded: it is possible to improve the objective arbitrarily much by
increasing the value of this variable.

² If the current tableau is optimal, LINEAR tries for alternative optimal solutions, looking at every
non-arti¯cial nonbasic variable with a shadow price of zero. If no pivot is found, the value of
this variable can be increased arbitrarily far without a®ecting feasibility and without changing
the value of the objective.

² If the current tableau is optimal and all non-arti¯cial nonbasic variables have positive shadow
prices, you are told that the optimal solution is unique.

After looking for pivot candidates, LINEAR asks whether you wish to do a pivot now. `Yes'
puts you into the `Do pivot' command, while `No' returns to the main menu.

5-16

Options

This command displays a number of settings, and allows them to be changed. Select the setting
you wish to change using " or # and Ã , or by pressing the capital letter.

Decimals is the number of decimal places used in displaying numbers (except in `Cut plane'). It only
a®ects the way numbers are displayed, not the precision with which they are stored internally.
The number of decimals may range from 0 to 9. However, any number that would not ¯t
in the ¯eld assigned to it is written in scienti¯c notation. Thus with `Decimals' set to 2,
`Show tableau' (which uses a ¯eld size of 10) will show `1234567.89' or `-123456.78', but
`-1.235E+06' instead of `-1234567.89'. After choosing this option, type a number from 0 to 9
and press Ã .

Maximize

or Minimize indicates whether the objective will be maximized or minimized. Choosing this option switches
between the two. This option is set when a ¯le is loaded, as indicated in the ¯le.

The remaining settings switch between ON and OFF when you select them.

Show pivots: If this is ON, at each pivot operation you are shown the entering and leaving variables, and
the value of the objective function after the pivot. Degenerate pivots are indicated by the word
`(degenerate)'. In addition, you are told when the algorithm begins Phases 0, 1 and 2.

| If OFF, this information is not given; instead, at each pivot a period `.' is written on the screen.

Keep

artificials: If this is is ON, arti¯cial variables are kept as nonbasic variables when they leave the basis.

| If OFF, they are deleted from the tableau. Since an arti¯cial variable can never re-enter the
basis once it has left, this is harmless as far as ¯nding the optimal solution is concerned. Since it
reduces the size of the tableau somewhat, it may be helpful in speeding up the solution process,
particularly if there are many equality constraints. On the other hand, when an arti¯cial variable
is deleted the shadow price is unavailable, and there can be no sensitivity analysis concerning
it.

Printing: When this is ON, screen output (except menus) is echoed to the printer (LPT1). This option

can also be toggled ON and OFF by pressing Ctrl PrtSc in any other menu.

Headers: When this is OFF, \header lines" such as `Values of basic variables' are omitted from
output sent to a ¯le by the `Record' command. When it is ON, these are included. OFF may
be convenient if the results ¯le will be used as input by a database program, for example.

Editor is the name by which your text editor is invoked by the `Edit' command. For example, if your
editor is ED.EXE, and you use would use the DOS command `ED FOO' to edit a ¯le named `FOO',
you should specify the name as `ED'. A drive and path may occur as part of the name. However,
if your editor command is actually a batch ¯le ED.BAT, you must specify the name as `CALL ED'
(and this will only work if you are using DOS 3.3 or higher).

Ok returns to the main menu, leaving the settings as currently shown.

The default initial settings are as follows: `Decimals' 4, `Show pivots', `Keep artificials'
and `Headers' ON, `Printing' OFF, and `Editor' blank. You can change the initial settings of
`Decimals', `Show pivots', `Keep artificials' and `Editor' in LINEAR.CFG (see the section
Con¯guring LINEAR in Chapter 4).

5-17

Quit

This command ends the LINEAR program and returns you to DOS. You are ¯rst given
another chance to reconsider: `Continue' returns to the main menu. Before exiting, LINEAR
automatically closes all open ¯les.

5-18

