
Writing problem ¯les

The problem ¯le is a text ¯le that states the problem in a format similar to the way you would
write it down on paper. Any text editor or word processor can be used to create it: the one
requirement is that it produce ordinary text ¯les. Many word processors produce ¯les containing
special codes for formatting purposes. LINEAR would produce error messages on encountering
such characters. However, most word processors have a \non-document" mode or some other
way of producing a ¯le without those special characters.

LINEAR itself does not contain an editor. Normally you would produce the problem ¯le with
your text editor before starting LINEAR. When LINEAR is running, unless you have a resident
\notepad" editor such as SideKick, you must temporarily leave the program to produce or alter
a problem ¯le. The procedure of leaving LINEAR, editing a ¯le, and returning to LINEAR to
load the ¯le can be made more convenient using the `Edit' command if LINEAR is run from a
suitable batch ¯le (see the section Batch ¯les and editing in chapter 4).

It is also possible to enter the problem ¯le directly from the keyboard. This is not recommended
except for very small problems because of the likelihood of errors (once a line is entered it can
not be called back for editing).

Here is the sample problem ¯le (EXAMPLE1.PRB on the distribution disk) that was used in the
Introduction:

constraints 2;

variables 3 x1 x2 x3;

maximize

20 x1 + 30 x2 + 15 x3 [profit];

1.5 x1 + x2 + x3 <= 100 [m1];

x1 + 2 x2 + x3 <= 100 [m2];

end

There are several additional items that can be included in a problem ¯le, but this one contains
all that is necessary:

(1) the constraints declaration: the word `constraints', followed by the number of constraints
and a semicolon. You may abbreviate `constraints' as `con' or `cons'.

(2) the variables declaration: the word `variables' followed by the number of variables, a list
of all the variables used, and a semicolon. You may abbreviate `variables' as `var' or `vars'.
Variable names must start with a letter and may include letters, digits and the underscore ` '.
They may be any length, but only the ¯rst 11 characters are recognized. Do not use any of the
following names:
ABS ARCTAN COS EXP LN MAX

MIN RANDOM ROUND SIN SQRT

Avoid names consisting of `C ' and a number, which LINEAR uses as constraint names.

(3) the objective: `maximize' or `minimize' (abbreviated `max' or `min'), the expression to be
maximized or minimized, and a semicolon.

(4) the constraints, separated by semicolons.

(5) the word `end'.

3-1

In all of this, you may use upper and lower case letters interchangeably. LINEAR never
distinguishes between the two.

It might sometimes seem annoying to have to count the constraints and count and list the
variables at the beginning of the ¯le, but this is actually a valuable feature for detecting errors.
One of the most common errors is misspelling a variable name; having the variables listed at
the beginning allows LINEAR to catch these errors immediately on loading the ¯le (unless the
misspelling happens to match another variable).

The objective and the constraints are written in ordinary mathematical style, and may run
over several lines. The constraints may involve `<=', `>=' or `='. You may use `<' and `>' as
abbreviations of `<=' and `>=' respectively. The terms may appear in any order, and on either
side of the inequality or equality: thus the ¯rst constraint might have been written as

100 - x2 >= 1.5 x1 + x3;

or even

200-.5X1-X2>=100+X3+X1;

Spacing is almost completely optional. There is one situation where a space is necessary: between
a number and a name starting with the letter `e'. In that case, without a space LINEAR would
assume that \scienti¯c notation" is being used, e.g. `2E3' means 2 £ 103 or 2000, while `2 E3'
is 2 times the variable `E3'.

Constraints such as `x1>=0' need not be stated, as LINEAR always assumes that all variables
must be ¸ 0.

The objective and constraints may be named, by placing the name in square brackets at the
start or before the concluding semicolon. These names follow the same rules as variable names.
They must all be distinct (and remember that only the ¯rst 11 characters count). If no name is
speci¯ed, the objective is called `OBJECTIVE' and the constraints are called `C 1', `C 2', etc.

Errors

It is very easy to make a mistake. I have tried to make LINEAR in such a way that it is easy to
identify errors and take corrective action.

When LINEAR detects any error, it will display an error message and a menu:

Continue Explain

Explain will produce a more detailed description of the error and any actions that `Continue' would
take in trying to correct it, and return to this menu.

Continue may (depending on the error) simply return to the main menu, or else keep going, perhaps
taking some corrective action, as noted by `Explain'.

| You will sometimes want to use the Esc key to exit to the main menu instead of using
`Continue'.

If the error is in a problem ¯le being loaded, the error message will include the o®ending line of
the ¯le, with a pointer to the approximate place the error occurs, such as the following:

3-2

Line 5

y + abs(2-z) < 3 [c1] ;

^

Error - Missing parenthesis

In this example, the error occurred in line 5 of the ¯le: the variable `z' was inside parentheses,
which is not allowed. As written, this is not a linear constraint and therefore unsuitable for
LINEAR. It could be replaced, however, by the two linear constraints `y + 2 - z < 3' and `y -

2 + z < 3'.

In many cases, including this one, `Continue' will stop processing this constraint and skip to
the next semicolon. The hope is to avoid having the one error spawn multiple error messages.
The following appears on the screen:

Begin skip

y + abs(2-z) < 3 [m1] ;

^ End skip

The `Begin skip' and `End skip' are to show you what was skipped over. While looking for
the next semicolon, LINEAR completely ignores everything except illegal characters and end of
¯le. This includes the constraint name, so LINEAR will provide this constraint with a name
consisting of `C ' and a number. Then it resumes processing with the next constraint.

In most cases LINEAR will still end by saying that the ¯le was loaded, but of course the tableau
that was loaded is not likely to be correct. You could try to correct the tableau with the `Change'
commands (see chapter 5), but it is usually best to edit the problem ¯le to correct the error.

Additional features

The following example shows several more features that can be used in problem ¯les: echoed and
non-echoed comments, user input, parameters, random numbers and arithmetic in coe±cients.

" Sample problem #2 by R. Israel, 28/04/87

"

constraints 5;

parameters 4

p = "Enter a value for p: ? " ?;

q = "Enter a value for q: ? " ?;

pi = 4 arctan(1) ; ! this is 3.14159...

r = round(random + p - 1/2) ;

! r is 1 with probability p, 0 with probability 1-p

variables 3 x1 x2 x3 ;

maximize x1 + x2 - x3 ;

x1 + abs(1/p+q) x2 <= min(r,p,q) ;

x2 + p q x3 >= round(5 r) - 3^(-p) x1 ;

3.1 q x1 + p x2 + x3 = ln(p) ;

x1 - x3 = sin(q r) x2 ;

x1 + x3 = 3.14159265358979 - pi ;

! rhs should be 0

end.

3-3

An echoed comment is anything between quotation marks `" "'. It will be sent to the screen,
exactly as written, when the ¯le is loaded. This includes the carriage return/line feed at the
end of a line if the comment extends over more than one line. If I had written

" Sample problem #2 by R. Israel, 28/04/87"

all on one line, the next echoed comment

"Enter a value for p: ? "

would have appeared on the same line of the screen instead of the next one. Echoed comments
are useful for verifying that the right version of the problem ¯le is being loaded, as well as in
prompts for user input.

User input can be accepted using `?'. Whenever this occurs in the problem ¯le, LINEAR waits
for a line to be entered, and uses this as if it were part of the problem ¯le. This is most useful
for obtaining values for adjustable parameters, although in principle any part of a problem ¯le
can be entered in this way. To help the user out, an echoed comment such as "Enter a value

for p: ?" should be used as a prompt. Note that the cursor moves to the next line when the

user presses Ã at the end of the line, so that in the example "Enter a value for p: ?"

and "Enter a value for q: ?" will appear on di®erent lines.

A non-echoed comment is anything that follows an exclamation `!' until the end of a line,
such as `! this is 3.14159...' in the example. These are simply ignored by the program.
Use echoed comments for documentation in the problem ¯le (e.g. explaining the meaning of
parameters, constraints and variables).

Often you will want to solve the same basic problem several times, with changes in a few
parameters. Each of these parameters may a®ect several coe±cients in di®erent ways, so that
re-editing the problem ¯le and making all the changes in coe±cients could be a laborious process.
To help in this, the parameters declaration and arithmetic expressions in coe±cients
are provided.

The (optional) parameters declaration comes between the constraints declaration and the
variables declaration. It consists of the word `parameters' followed by the number of parameters
and the list of parameters and values. There may be up to 115 parameters. Names of parameters
follow the same rules as names of variables. You should not give a parameter the same name
as a variable. The name of each parameter is followed by `=' and the parameter value, which
may be given as a number or an expression. You may wish to use `?' to have the user enter the
parameter value from the keyboard. The values given to the parameters in this declaration can
then be referred to by the parameter names in the objective and constraints. Separate the value
of a parameter from the name of the next parameter by `,' or `;', and end the list of parameters
with `;'.

Note: these are what I call \data parameters". Their values are set at the time the problem is
loaded. Two quite di®erent types of parameters (\objective parameters" and \rhs parameters")
are used in parametric programming with the `Analyze' command, where the e®ects of changes
in those parameters can be studied.

The word `random' can be used in place of a parameter. It produces a random number between
0 and 1 (with a uniform distribution). The random number generator is initialized using the
system clock the ¯rst time `random' is used, so each time the problem ¯le is loaded a di®erent
sequence of numbers will be produced.

3-4

An expression may involve numbers, any parameters already de¯ned, the usual arithmetic
operations (including `^' for powers), and the functions `abs', `arctan', `cos', `sin', `exp', `ln',
`sqrt', `round', `max', and `min'. Multiplication may be indicated with either `*' or simply
a blank space. However, be sure to include this space: don't write `pq' if you mean `p q',
or LINEAR will interpret it as a single name. The arguments of functions must be within
parentheses, e.g. `sin(p)', not `sin p'. `max' and `min' can take any number of arguments,
separated by commas. Expressions are evaluated using the usual rules of algebra: powers have a
higher priority than multiplication and division, which in turn have higher priority than addition
and subtraction. Multiplication and division have equal priority, as do addition and subtraction.
Thus

a / b c + d e ^ f

is interpreted as

((a / b) * c) + (d * (e ^ f)).

(If in doubt about this, use parentheses).

In the objective function and constraints, the coe±cients may be expressions instead of numbers.
The rules for these expressions are the same as for expressions as values of parameters. Note
that a coe±cient must come before the variable it multiplies: thus if `p' is a parameter and
`x' is a variable, `p x' is allowed but `x p' is not. Moreover, variables are not allowed within
parentheses, e.g. `p(x-y)' must be replaced by `p x - p y' if `x' and `y' are variables.

Some advice on style

This section is about form, not content | for advice on modelling, see the section Modelling
in chapter 2.

The features discussed in the last section are particularly important in any problem that will be
used more than once, especially if it will be used by more than one person, or over an extended
period of time. They allow the problem ¯le to be self-documenting and easily modi¯ed. There
is little to lose by including them, while omitting them can lead to a lot of e®ort being wasted.

As mentioned, an echoed comment is useful for identifying the problem. This will avoid the
possibility of accidentally using the wrong problem ¯le, especially when there are several ¯les
with similar names on the disk, or di®erent versions with the same name on di®erent disks. Use
a consistent convention for identi¯cation. Include the date of the last modi¯cation.

Non-echoed comments may be used to indicate the signi¯cance of parameters, variables and
constraints. What is obvious to you when you write the problem ¯le may not be so obvious
later when someone is trying to ¯gure out what it means. To some extent, the names of the
parameters, variables and constraints can help here, if they are well chosen. There is a tendency
for students, in particular, to call the variables `X1', `X2', etc., because those names are used in
teaching the theory and methods of linear programming. However, in practice it is much better
to use descriptive or mnemonic names so that the signi¯cance of a variable is apparent at a
glance. This is especially true in large problems. Typical names might look like `P3U2M5'. A
non-echoed comment might explain

! PiUjMk: product i from unit j in month k

3-5

In a large problem, there will typically be several groups of similar constraints. To make the
problem easier to read and understand, keep these groups together in the problem ¯le, headed
by a non-echoed comment describing the type of constraint, and leave blank space between the
groups.

In formulating a problem, there is often some calculation necessary to set up the numbers
involved. Parameters and arithmetic expressions allow LINEAR to do this work for you. The
amount of e®ort saved may be minimal if the problem will only be run once. However, if the
problem is used or modi¯ed at a later date, there can be considerable advantages:

| you may only need to change one or two parameter values instead of correcting many individual
numbers.

| clarity is gained by showing how the numbers in the problem are obtained.

If the problem will be run a number of times with di®erent values of a few parameters, it will
be easier to use the `?' feature to ask the user for the value each time, rather than editing the
problem each time. If the number of parameters to change is larger, editing the ¯le will be more
convenient. In this case it will be much better to have the changes all made in one place, the
parameters declaration, rather than scattered through the ¯le.

Consult the problem ¯les on the distribution disk for some examples of the use of these features.

Another way to set up a problem is to use a spreadsheet program to produce a DIF ¯le (see
the next section). This can be especially useful if the problem data come from a database, or
require more extensive calculations than LINEAR itself can conveniently provide.

DIF ¯les

The ability to load and save DIF ¯les provides a means of communicating between LINEAR and
most popular spreadsheet packages. A typical case might involve

(1) setting up the problem in a spreadsheet,

(2) saving it from the spreadsheet in DIF format,

(3) loading it into LINEAR,

(4) solving it there,

(5) saving the resulting tableau in DIF format,

(6) loading it back into the spreadsheet, and

(7) using the results in the spreadsheet.

The DIF format was chosen because most spreadsheet packages can either work directly with
this format, or translate ¯les between this format and their own formats (e.g. with the TRANS
utility of Lotus 1-2-3).

It is also possible to load into LINEAR a DIF ¯le produced by LINEAR, i.e to use DIF ¯les in the
same way as TAB ¯les. However, TAB ¯les are to be preferred for such purposes: they retain
complete accuracy (while the DIF ¯le may involve some loss of accuracy), are usually smaller
in size and quicker to use, and include parameters (which DIF ¯les omit).

Below is an example of part of a Lotus 1-2-3 worksheet that can be made into a DIF ¯le as
input for LINEAR.

3-6

A B C D E F

1 MAX X1 X2 X3

2 PROFIT 1 1 -1

3 CON1 1 3.5 0 <= 4.5

4 CON2 0.1 1 5.9 >= 7

5 9 2 1 = 12

6 8 2 = 10

7 1 1 = 2

(the 1 to 7 on the left and A to F on the top are 1-2-3's row and column labels).

The format must follow this one closely:

(1) At the top left of the worksheet is `MAX' or `MIN', indicating whether to maximize or minimize
the objective.

(2) The rest of the top row consists of the names of the variables, labelling the columns. The two
rightmost columns should be left unlabelled, corresponding to the symbols `>', `=' etc. and the
RHS column.

(3) The rows of the worksheet below the top row correspond to the objective function and the
constraints. The objective must come ¯rst. The labels for these rows are in the extreme left
column (these may be left blank, in which case LINEAR will supply default names as it does for
a PRB ¯le).

(4) The main body of the worksheet contains the coe±cients of the objective function and con-
straints. Zero entries may be left blank. otherwise each entry is a number (the actual worksheet
cell may contain a formula, but LINEAR will only see the value). Note that for the objective
function the entries are the actual coe±cients, not (as in a tableau for a maximization problem)
the coe±cients with signs reversed.

(5) The second-last column must contain `<=', `>=' or `=' for each constraint. `>=' and `<=' may be
abbreviated as `<' and `>'. There should be a blank in this column for the objective function.

(6) The last column must contain the right-hand-side entries for each constraint. There may be an
entry here for the objective function, which would be a constant term in that function.

To make this into a DIF ¯le, you must ¯rst (in Lotus 1-2-3) use ` /FS' (File Save) to save the
worksheet to a ¯le, then use the Lotus TRANS utility to translate this into a DIF ¯le. This
DIF ¯le can be loaded by LINEAR's `Load Dif' command.

If the linear programming problem is only part of a larger 1-2-3 worksheet, you will have to use
`/FX' (File eXtract) to select only that part of the worksheet to put in the ¯le: LINEAR will not
work with a DIF ¯le that contains any entries (even blanks) outside of the linear programming
problem. However, there is a slight complication: the Lotus TRANS utility will not work with
a ¯le produced by `/FX', only `/FS'. Therefore, you must do the following (starting in 1-2-3):

(1) use `/FX' to extract the linear programming problem from the worksheet.

(2) use `/FR' (File Retrieve) with the ¯le created in step (1).

(3) use `/FS' (File Save) to save the ¯le.

3-7

(4) exit 1-2-3 and use TRANS to translate the saved ¯le to DIF format.

(5) start LINEAR and `Load' the DIF ¯le.

Some spreadsheet packages will give you a choice of saving a ¯le \by rows" or \by columns". It
does not matter which you choose: LINEAR can determine which method was used (by looking
for the `<', `>' and `=' symbols), and load the ¯le the correct way. In fact, the worksheet could
be transposed (rows interchanged with columns) and the result would be the same as far as
LINEAR is concerned.

The example produces the following tableau (as presented by the `Tableau Show tableau'
command):

X1 X2 X3 RHS

PROFIT -1.0000 -1.0000 1.0000 0.0

CON1 1.0000 3.5000 0.0 4.50000

CON2 -0.1000 -1.0000 -5.9000 -7.00000

* C_3 9.0000 2.0000 1.0000 12.00000

* C_4 8.0000 2.0000 0.0 10.00000

* C_5 1.0000 0.0 1.0000 2.00000

Using `Solve', we obtain the following tableau (as shown by `Tableau Show tableau'):

* *

CON1 C_5 C_4 RHS

PROFIT 0.1538 -1.0000 0.2308 1.0000

CON2 0.7538 5.9000 -0.8192 0.0

X2 0.3077 0.0 -0.0385 1.0000

* C_3 0.0 -1.0000 -1.0000 0.0

X1 -0.0769 0.0 0.1346 1.0000

X3 0.0769 1.0000 -0.1346 1.0000

Note, by the way, that although the arti¯cial variable C 3 is still basic, its value is 0, so we do
have the optimal solution (in fact, constraint C 3 is redundant, as it is the sum of C 1 and C 2).
The negative shadow price of C 5 is also harmless, as this is an arti¯cial variable.

We can now use `Save Dif' to save this tableau, and then TRANS to translate the DIF ¯le to a
123 worksheet. TRANS will ask you whether the DIF ¯le was saved \by rows" or \by columns":
choose \by rows". The resulting 123 worksheet looks like this:

A B C D E F

1 MAX CON1 *C_5 *C_4

2 PROFIT -0.15385 1 -0.23077 1

3 CON2 0.75385 5.9 -0.81923 <= 0

4 X2 0.30769 0 -0.03846 <= 1

5 C_3 0 -1 -1 = 0

6 X1 -0.07692 0 0.13461 <= 1

7 X3 0.07692 1 -0.13461 <= 1

In using your spreadsheet to interpret the results, the following points should be noted:

(1) Any arti¯cial variables still in the basis label rows with `=' signs. All the other rows, besides the
objective, have `<=' signs. Arti¯cial variables that have left the basis are indicated in the top
row with a `*' before the name.

3-8

(2) The values of the objective function and basic variables are in the column on the right.

(3) The objective function row conforms to the convention used for input of DIF ¯les. Thus for a
maximization problem the signs here (except in the last column) are reversed from what they
would be in `Tableau Show tableau', and the negatives of the shadow prices are shown rather
than the shadow prices themselves.

3-9

