
LINEAR is an interactive linear programming package for the IBM PC/XT/AT family and
compatibles. Its features include the following:

| Natural format for problem ¯les.

| Extensive sensitivity analysis to answer \what-if" questions.

| Support of math coprocessor.

| On-line help.

Don't be misled by the word programming | this has nothing to do with computer
programming. The \programming" in linear programming simply means \planning". I did
the computer programming for you in producing this package. You don't need to know anything
about computers to use it.

No mathematical training beyond high-school algebra is necessary to use LINEAR. However,
a college-level course in linear programming, or at least some knowledge of linear algebra,
would be helpful for the more advanced techniques. This manual is not a linear programming
textbook. It and the software could be used, however, as a supplement to a linear programming
or mathematical modelling course. For the mathematical theory of linear programming, see the
following references:

V. Chv¶atal [1983]. Linear Programming. W.H. Freeman: New York/San Francisco

S.I. Gass [1975]. Linear Programming. McGraw-Hill: New York

G.B. Dantzig [1963]. Linear Programming and Extensions. Princeton U. Press: Princeton

This software was written by Robert B. Israel using Turbo Pascal. Please address any comments,
questions or reports of bugs to him at

Department of Mathematics

University of British Columbia

Vancouver, BC, Canada V6T 1Y4

System Requirements
| IBM PC or compatible

| PC-DOS/MS-DOS 2.0 or above

| at least 128 KB RAM memory

| 80 column display

| at least one °oppy disk drive (to read the distribution disk).

The following are recommended:

| Any full-screen editor or word processor program that produces ordinary text ¯les.

| Math coprocessor chip.

| Second °oppy disk drive, hard disk or RAMdisk.

Maximum problem size depends on available memory, so if you want to handle large problems
you should get as much system memory as possible (up to 640K). For example, with 150,000
bytes of free memory (as indicated by CHKDSK), LINEAR can handle 86 constraints in 86 variables,
while with 600,000 bytes free it can handle 283 constraints in 283 variables.

If your computer has a numeric coprocessor chip (8087, 80287 or 80387), or is a 486 (not 486SX),
which has a coprocessor built in, LINEAR will automatically detect and use it. This makes
solving problems much faster | sometimes over 10 times as fast.

1-1

Before you start

Before doing anything else, you should be sure to back up the distribution disk. This is, of
course, a good idea for any piece of valuable software or data. The distribution disk is not
copy-protected, and may be copied with the COPY or DISKCOPY commands. Keep the original in
a safe place, and work with the copy.

The ¯les you will need on your working disk are as follows:

| LINEAR.EXE.

| LINEAR.HLP.

| LIN.BAT and LIN1.BAT (if you want to use the `Edit' command).

You may also want to put LINEAR.CFG there. See the section Con¯guring LINEAR in Chapter
4.

If you have a hard disk, put these in the same directory. The distribution disk also contains ¯les
for several examples which will be referred to in this manual.

What is Linear Programming?

The best way to explain linear programming is with an example.

A manufacturer can produce three products: P1, P2 and P3. The manufacturer would like to
make as much pro¯t as possible. However, production capacity is limited by the amount of
processing time available on two machines M1 and M2, which are used in making the products.

Each unit of P1 requires 1.5 hours on M1 and 1 hour on M2, and brings in $20 of pro¯t.

Each unit of P2 requires 1 hour on M1 and 2 hours on M2, and brings in $30 of pro¯t.

Each unit of P3 requires 1 hour on M1 and 1 hour on M2, and brings in $15 of pro¯t.

In a week there are 100 hours available on each machine.

How much of each product should be produced?

The problem can be formulated mathematically as follows. Let x1,x2 and x3 be the amounts
of the three products produced each week. These are the decision variables of the problem.
Then the pro¯t is given by the expression 20x1 + 30x2 + 15x3. This is called the objective
function. We want to ¯nd values of x1, x2 and x3 that will maximize the objective, subject
to several constraints. To produce the amounts x1, x2 and x3 of the products will require a
total of 1:5x1 + x2 + x3 hours of M1 time and x1 + 2x2 + x3 hours of M2 time. These amounts
must not exceed the 100 hours available. This produces two constraints, 1:5x1 + x2 + x3 · 100
and x1 + 2x2 + x3 · 100. There are three more constraints, which simply express the fact that
we can't produce a negative amount of a product: x1 ¸ 0, x2 ¸ 0, and x3 ¸ 0. Here, then, is
the mathematical statement of the problem:

maximize 20x1 + 30x2 + 15x3

subject to

1:5x1+ x2+x3· 100
x1+2x2+x3· 100

x1 ¸ 0; x2 ¸ 0; x3 ¸ 0

1-2

The objective function and constraints are all linear: they involve sums of terms, each of
which can be a constant, a variable or a constant times a variable, but nothing else. For
example, a variable times a variable is not allowed. This is why the subject is called \linear"
programming. To solve problems involving objectives or constraints that are not linear,
nonlinear programming must be used. Fortunately, many problems of practical interest
involve only linear objectives and constraints.

Our example involves maximizing the objective, but in other problems you may want to
minimize an objective (perhaps representing cost) instead. The constraints in the example
all involved · or ¸ signs, but = signs may also occur. For example, you might want to
insist that all available time on machine M1 be used up: the ¯rst constraint would become
1:5x1 + x2 + x3 = 100.

A linear programming problem, then, is one in which a linear objective function of several
variables must be maximized or minimized subject to a number of linear constraints.

Solving the Problem

Before a problem can be solved, it must be put into a form that LINEAR can read. I have already
done this for our example in the ¯le EXAMPLE1.PRB. Here are the contents of that ¯le:

constraints 2;

variables 3 x1 x2 x3;

maximize

20 x1 + 30 x2 + 15 x3 [profit];

1.5 x1 + x2 + x3 <= 100 [m1];

x1 + 2 x2 + x3 <= 100 [m2];

end

This is quite similar to our mathematical statement of the problem. Note, however, that the
constraints xi ¸ 0 are not included: LINEAR automatically assumes that all variables must be
¸ 0.

The problem ¯le can be produced with any text editor or word processor that produces ordinary
text ¯les. Alternatively, you can enter the problem directly from the keyboard.

² Turn the machine on.

² Put your working disk in the drive (or on a hard disk system, go to the directory containing the
LINEAR ¯les).

² Enter the command `linear'.

Note: In this manual, to \enter" something means that you type it, without quotation marks
of course, and press Ã .

You should see a menu at the bottom of the screen:

Load Edit Record Path Options Quit

1-3

The word `Load' should be in reverse video (black on white), and the capital letters should be
highlighted. You can use the Ã and ! cursor control keys (on the numeric keypad in
most keyboards) to move the reverse- video bar to any of the ¯ve choices. If it doesn't move,

you probably have
Num
Lock on: pressing the

Num
Lock key once should correct the situation. To

select a choice in a menu, either press the key for its capital letter, or move the bar to it and
press Ã , (the large key called `Return' or `Enter').

² Choose `Load'.

Now you should see the following menu:

load Problem Tab Dif

LINEAR is asking for the type of input ¯le.

² Choose `Problem'. Next you are asked for the name of the input ¯le.

² To use the prepared example, enter `example1'.

² If you prefer to type in the problem yourself, enter `con:', and then enter each line of the
problem.

After the last line, LINEAR should signal `Loaded' and the name of the ¯le. You are now ready
to solve the problem.

² Choose `Solve'.

The output will look like this:

Solving problem

Pivot # Entering Leaving PROFIT

Phase 2 begins

1 X2 SLACK M2 1500.0000

2 X1 SLACK M1 1750.0000

Optimal solution found after 2 iterations

Optimal value of PROFIT: 1750.0000

The best solution, as found by LINEAR, yields a pro¯t of $1750 per week.

² To see what values for the variables produce this amount of pro¯t, choose `Values Variables'.

The output is as follows:

Values of basic variables

PROFIT = 1750.0000

X1 = 50.0000

X2 = 25.0000

X3 is not mentioned, because it is a nonbasic variable: this means that its value in the solution
is 0. Thus the best plan for the manufacturer is to produce 50 units of P1, 25 units of P2 and
no P3 each week.

There is a good deal of additional information that LINEAR can tell about the problem, as will
be explained in later chapters. But for now, you can exit from LINEAR and return to DOS.

1-4

² Choose `Quit Exit'.

Trademark Acknowledgements
DIF is a trademark of Software Arts, Inc.

IBM PC, XT, AT and PC-DOS are registered trademarks of International Business Machines
Corp.

Lotus 1-2-3 is a trademark of Lotus Development Corp.

MS-DOS is a trademark of Microsoft Corp.

SideKick and Turbo Pascal are registered trademarks of Borland International, Inc.

1-5

