A Klee-Minty Example

Klee-Minty example number n is

maximize
$$\sum_{\substack{j=1\\j=1}}^{n} 10^{n-j} x_j$$

subject to
$$2\sum_{\substack{j=1\\j=1\\\text{all } x_j \ge 0}}^{i-1} 10^{i-j} x_j + x_i \le 100^{i-1} \text{ for } 1 \le i \le n$$

Using the most-negative-entry pivoting rule, this requires $2^n - 1$ pivots to find an optimal solution.

In the case n = 3, the problem is:

maximize
$$100x_1 + 10x_2 + x_3$$

subject to $x_1 \leq 1$
 $20x_1 + x_2 \leq 100$
 $200x_1 + 20x_2 + x_3 \leq 10000$
 $x_1, x_2, x_3 \geq 0$

Initial tableau:

z	x_1	x_2	x_3	s_1	s_2	s_3	\mathbf{rhs}		
1	-100	-10	-1	0	0	0	0	=	z
0	1	0	0	1	0	0	1	=	s_1
0	20	1	0	0	1	0	100	=	s_2
0	200	20	1	0	0	1	10000	=	s_3

First pivot: x_1 enters, s_1 leaves the basis.

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	-10	-1	100	0	0	100	=	z
0	1	0	0	1	0	0	1	=	x_1
0	0	1	0	-20	1	0	80	=	s_2
0	0	20	1	-200	0	1	9800	=	s_3

Second pivot: x_2 enters, s_2 leaves.

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	0	-1	-100	10	0	900	=	z
0	1	0	0	1	0	0	1	=	x_1
0	0	1	0	-20	1	0	80	=	x_2
0	0	0	1	200	-20	1	8200	=	s_3

Third pivot: s_1 enters, x_1 leaves.

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	100	0	-1	0	10	0	1000	=	z
0	1	0	0	1	0	0	1	=	s_1
0	20	1	0	0	1	0	$\begin{array}{c}1\\100\\8000\end{array}$	=	x_2
0	-200	0	1	0	-20	1	8000	=	s_3

Fourth pivot: x_3 enters, s_3 leaves.

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	-100	0	0	0	-10	1	9000	=	z
0	1	0	0	1	0	0	1	=	s_1
0	20	1	0	0	1	0	100	=	x_2
0	-200	0	1	0	-20	1	8000	=	x_3

Fifth pivot: x_1 enters, s_1 leaves.

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	0	0	100	-10	1	9100	=	z
0	1	0	0	1	0	0	1	=	x_1
0	0	1	0	-20	1	0	80	=	x_2
0	0	0	1	200	-20	1	8200	=	x_3

Sixth pivot: s_2 enters, x_2 leaves

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	10	0	-100	0	1	9900	=	z
0	1	0	0	1	0	0	1	=	x_1
0	0	1	0	-20	1	0	80	=	s_2
0	0	20	1	-200	0	1	9800	=	x_3

Seventh pivot: s_1 enters, x_1 leaves.

z	x_1	x_2	x_3	s_1	s_2	s_3	\mathbf{rhs}		
1	100	10	0	0	0	1	10000	=	z
0	1	0	0	1	0	0	1	=	s_1
0	20	1	0	0	1	0	100	=	s_2
0	200	20	1	0	0	1	10000	=	x_3

This is optimal.