The Karush-Kuhn-Tucker Conditions

We'll be looking at nonlinear optimization with constraints:
maximize $f\left(x_{1}, \ldots x_{n}\right)$
subject to $g_{i}\left(x_{1}, \ldots x_{n}\right) \leq b_{i}$ for $i=1 \ldots m$

The text does both minimize and maximize, but it's simpler just to say we'll make any minimize problem into a maximize problem.

We'll start with an example:
maximize $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
subject to $g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} \leq b_{1}=2$
The feasible region is a disk of radius $\sqrt{2}$ centred at the origin. The global maximum (which is the only local maximum) is at $\mathbf{p}_{0}=(1,1)$. Suppose you're at some other point. How can you tell it's not a local maximum? Because there's some direction you can move that increases f and stays within the feasible region. If you're at a local maximum you can't do that.
Case 1: From a point \mathbf{p} in the interior of the disk, you can go in the direction of the gradient $\nabla f(\mathbf{p})$. As long as that gradient is not $\mathbf{0}, f$ increases in that direction. On the other hand, if there was a point \mathbf{p} with $\nabla f(\mathbf{p})=0$ we might have a local maximum there.
Case 2: From a point \mathbf{p} on the circle, you might not be able to go in the direction of the gradient, but you can go in the direction of some vector \mathbf{v} that points into the circle. In order for f to increase in that direction, we want $\mathbf{v} \cdot \nabla f(p)>0$. In order to make sure the vector points into rather than out of the circle, we want $\mathbf{v} \cdot \nabla g_{1}(p)<0$.

At the maximum \mathbf{p}_{0}, there's no such \mathbf{v}. Why not? $\nabla f\left(\mathbf{p}_{0}\right)=(1,1)$ and $\nabla g_{1}\left(\mathbf{p}_{0}\right)=$ $(2,2)=2 \nabla f\left(\mathbf{p}_{0}\right)$. Clearly if $\nabla f(\mathbf{p})=\lambda \nabla g(\mathbf{p})$ with $\lambda \geq 0$, there can't be a vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(p)>0$ and $\mathbf{v} \cdot \nabla g_{1}(p)<0$. And this is the only way it can happen: if there is no vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(\mathbf{p})>0$ and $\mathbf{v} \cdot \nabla g_{1}(\mathbf{p}) \leq 0, \nabla f(\mathbf{p})$ must be $\lambda \nabla g_{1}(\mathbf{p})$ for some $\lambda \geq 0$.

You may have noticed a slight change in the last paragraph: I started with $\mathbf{v} \cdot \nabla g_{1}(p)<$ 0 and then changed that $<$ to \leq. In this case, the justification is this: if there was a vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(\mathbf{p})>0$ and $\mathbf{v} \cdot \nabla g_{1}(\mathbf{p})=0$ you could move it a little (at least if $\nabla g_{1}(\mathbf{p}) \neq 0$) to make $\mathbf{v} \cdot \nabla g_{1}(\mathbf{p})>0$ and still have $\mathbf{v} \cdot \nabla f(\mathbf{p})>0$. On the other hand, we could be in trouble in other examples if $\nabla g_{1}(\mathbf{p})=0$, because then you couldn't use $\nabla g_{1}(\mathbf{p})$ to tell you whether a certain direction goes into the feasible set or not. This slight quibble is going to re-emerge when we talk about "constraint qualification".

We can combine the two cases: for a local maximum we need $\nabla f(\mathbf{p})=\lambda \nabla g_{1}(\mathbf{p})$ with $\lambda \geq 0$ and $\lambda\left(b_{1}-g_{1}(\mathbf{p})\right)=0$. This might remind you of a complementary slackness condition.

What if there's more than one constraint? Let's add the constraint $g_{2}\left(x_{1}, x_{2}\right)=x_{1} \leq$ $b_{2}=0$. Now the maximum is at $(0, \sqrt{2})$.

How can we tell $(0, \sqrt{2})$ is a maximum? This is a point \mathbf{p}_{1} where both $g_{1}\left(\mathbf{p}_{1}\right)=b_{1}$ and $g_{2}\left(\mathbf{p}_{1}\right)=b_{2} ; \nabla f\left(\mathbf{p}_{1}\right)=(1,1), \nabla g_{1}\left(\mathbf{p}_{1}\right)=(0,2 \sqrt{2})$ and $\nabla g_{2}\left(\mathbf{p}_{1}\right)=(1,0)$. Could there be a vector \mathbf{v} with $\mathbf{v} \cdot \nabla f\left(\mathbf{p}_{1}\right)>0, \mathbf{v} \cdot \nabla g_{1}\left(\mathbf{p}_{1}\right) \leq 0$ and $\mathbf{v} \cdot \nabla g_{2}\left(\mathbf{p}_{1}\right) \leq 0$? No, because $\nabla f\left(\mathbf{p}_{1}\right)=\frac{1}{2 \sqrt{2}} \nabla g_{1}\left(\mathbf{p}_{1}\right)+\nabla g_{2}\left(\mathbf{p}_{2}\right)$.

On the other hand, $\mathbf{p}_{2}=(0,-\sqrt{2})$ also has $g_{1}\left(\mathbf{p}_{2}\right)=b_{1}$ and $g_{2}\left(\mathbf{p}_{2}\right)=b_{2}$; but $\nabla f\left(\mathbf{p}_{2}\right)=$ $(1,1), \nabla g_{1}\left(\mathbf{p}_{2}\right)=(0,-2 \sqrt{2})$ and $\nabla g_{2}\left(\mathbf{p}_{2}\right)=(1,0)$. There is a vector \mathbf{v} in this case, e.g. $(0,1)$, so \mathbf{p}_{2} is not a maximum. Notice that you can't write $\nabla f\left(\mathbf{p}_{2}\right)$ as a linear combination of $\nabla g_{1}\left(\mathbf{p}_{2}\right)$ and $\nabla g_{2}\left(\mathbf{p}_{2}\right)$ with coefficients ≥ 0.
Theorem: Suppose $\mathbf{a}_{1}, \ldots \mathbf{a}_{m}$ and \mathbf{c} are vectors in \mathbf{R}^{n}. Then the following are equivalent:
(a): there are no vectors \mathbf{x} with $\mathbf{x} \cdot \mathbf{c}>0$ and all $\mathbf{x} \cdot \mathbf{a}_{i} \leq 0$
(b): There are $\lambda_{1}, \ldots \lambda_{m}$ with $\mathbf{c}=\lambda_{1} \mathbf{a}_{1}+\ldots \lambda_{m} \mathbf{a}_{m}$ and all $\lambda_{i} \geq 0$.

Proof: Consider the linear programming problem P :
maximize $z=\mathbf{x} \cdot \mathbf{c}$
subject to $\quad \mathbf{x} \cdot \mathbf{a}_{i} \leq 0$ for all i
all x_{j} URS

This is certainly feasible ($\mathbf{x}=0$ satisfies the constraints). There are two possibilities:
(i) (a) is true, and P has an optimal solution: the optimal value is 0 .
(ii) (a) is false, and P is unbounded (because if \mathbf{x} satisfies (a), so does $2 \mathbf{x}$ with a larger value of z).

By duality, in case (i) the dual problem D also has an optimal solution, while in case (ii) D is infeasible. But D is this:
minimize 0
subject to $\quad \sum_{i} y_{i} \mathbf{a}_{i}=\mathbf{c}$

$$
\text { all } y_{i} \geq 0
$$

In case (i), an optimal solution of D has $y_{i}=\lambda_{i}$ satisfying (b). In case (ii), saying D is infeasible just says no such λ_{i} exist.
Theorem: Suppose the problem
maximize $\quad f(\mathbf{x})$
subject to $g_{i}(\mathbf{x}) \leq b_{i}$ for $i=1 \ldots m$
has a local maximum at $\mathbf{x}=\mathbf{p}$, and that a constraint qualification (to be specified) is satisfied at \mathbf{p}. Then there are $\lambda_{1}, \ldots \lambda_{m}$ such that

$$
\begin{aligned}
\nabla f(\mathbf{p})-\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(\mathbf{p}) & =0 \\
\lambda_{i}\left(b_{i}-g_{i}(\mathbf{p})\right) & =0, i=1, \ldots, m \\
\lambda_{i} & \geq 0, i=1, \ldots, m \\
g_{i}(\mathbf{p}) & \leq b_{i}, i=1, \ldots, m
\end{aligned}
$$

Those equations (the first is really n, one for each coordinate) and inequalities are called the Karush-Kuhn-Tucker (KKT) conditions. Note that I'm including the inequalities $g_{i}(\mathbf{p}) \leq b_{i}$ of the problem itself as part of the KKT conditions, just to make sure we don't forget them. Also, if we require $x_{i} \geq 0$, we treat that as just one other constraint (in the form $-x_{i} \leq 0$), rather than have a special version of the KKT conditions as the text does.

We can also deal with equality constraints as well as inequalities, with the following modification: for an equality constraint $g_{i}(\mathbf{x})=b_{i}$, of course we require $g_{i}(\mathbf{x})=b_{i}$, but we don't care about the sign of the corresponding λ_{i}.

Worked Example:

$$
\begin{array}{lll}
\operatorname{maximize} & f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{4}+\left(x_{2}-2\right)^{2} \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} & \leq 2 \\
& g_{2}\left(x_{1}, x_{2}\right)=-x_{1}+x_{2} \leq 2 \\
& g_{3}\left(x_{1}, x_{2}\right)=x_{1}-x_{2} & \leq 2 \\
& g_{4}\left(x_{1}, x_{2}\right)=-x_{1}-x_{2} \leq 2
\end{array}
$$

Write the KKT conditions and show that $\mathbf{p}_{1}=(2,0)$ satisfies them, but $\mathbf{p}_{2}=(0,2)$ doesn't.

$$
\begin{aligned}
4\left(x_{1}-1\right)^{3} & =\lambda_{1}-\lambda_{2}+\lambda_{3}-\lambda_{4} \\
2\left(x_{2}-2\right) & =\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4} \\
\lambda_{1}\left(2-x_{1}-x_{2}\right) & =0 \\
\lambda_{2}\left(2+x_{1}-x_{2}\right) & =0 \\
\lambda_{3}\left(2-x_{1}+x_{2}\right) & =0 \\
\lambda_{4}\left(2+x_{1}+x_{2}\right) & =0 \\
x_{1}+x_{2} & \leq 2 \\
-x_{1}+x_{2} & \leq 2 \\
x_{1}-x_{2} & \leq 2 \\
-x_{1}-x_{2} & \leq 2 \\
\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} & \geq 0
\end{aligned}
$$

For \mathbf{p}_{1} we have $g_{1}\left(\mathbf{p}_{1}\right)=g_{3}\left(\mathbf{p}_{1}\right)=2$ while $g_{2}\left(\mathbf{p}_{1}\right)<2$ and $g_{4}\left(\mathbf{p}_{1}\right)<2$, so $\lambda_{2}=\lambda_{4}=0$. The first two equations then say

$$
\begin{aligned}
4 & =\lambda_{1}+\lambda_{3} \\
-4 & =\lambda_{1}-\lambda_{3}
\end{aligned}
$$

The solution of these is $\lambda_{1}=0, \lambda_{3}=4$, and these are both ≥ 0.
For \mathbf{p}_{2} we have $g_{1}\left(\mathbf{p}_{2}\right)=g_{2}\left(\mathbf{p}_{2}\right)=0$ while $g_{3}\left(\mathbf{p}_{2}\right)<2$ and $g_{4}\left(\mathbf{p}_{2}\right)<2$, so $\lambda_{3}=\lambda_{4}=0$. The first two equations say

$$
\begin{aligned}
-4 & =\lambda_{1}-\lambda_{2} \\
0 & =\lambda_{1}+\lambda_{2}
\end{aligned}
$$

The only solution of these is $\lambda_{1}=-2, \lambda_{2}=2$. Since $-2<0$, we can't satisfy the KKT conditions here.

One of several possible constraint qualifications is the Linear Independence Constraint Qualification (LICQ). A constraint $g_{i}(\mathbf{x}) \leq b_{i}$ is said to be binding at $\mathbf{x}=\mathbf{p}$ if $g_{i}(\mathbf{p})=b_{i}$. We say the LICQ holds at $\mathbf{x}=\mathbf{p}$ if the gradients of the g_{i} for the constraints that are binding at \mathbf{p} are linearly independent. For example, in the last example each of \mathbf{p}_{1} and \mathbf{p}_{2} had two binding constraints, and the gradients of the corresponding g_{i} were linearly independent.

The KKT conditions are necessary conditions for a local maximum. They don't guarantee that a point satisfying them is actually a local maximum. In this example, $(2,0)$ is actually not a local maximum.

