The Karush-Kuhn-Tucker Conditions

We'll be looking at nonlinear optimization with constraints:

maximize f(x1,...z,)
subject to g;(x1,...x,) <b;fori=1...m

The text does both minimize and maximize, but it’s simpler just to say we’ll make
any minimize problem into a maximize problem.

We'll start with an example:

maximize f(x1,22) =21 + 2
subject to g1 (xy,22) = 22 + 23 < by =2

The feasible region is a disk of radius v/2 centred at the origin. The global maximum

(which is the only local maximum) is at po = (1,1). Suppose you're at some other point.
How can you tell it’s not a local maximum? Because there’s some direction you can move
that increases f and stays within the feasible region. If you’re at a local maximum you
can’t do that.
Case 1: From a point p in the interior of the disk, you can go in the direction of the
gradient V f(p). As long as that gradient is not 0, f increases in that direction. On the
other hand, if there was a point p with V f(p) = 0 we might have a local maximum there.
Case 2: From a point p on the circle, you might not be able to go in the direction of
the gradient, but you can go in the direction of some vector v that points into the circle.
In order for f to increase in that direction, we want v - V f(p) > 0. In order to make sure
the vector points into rather than out of the circle, we want v - Vg1 (p) < 0.

At the maximum pg, there’s no such v. Why not? Vf(po) = (1,1) and Vgi1(po) =
(2,2) =2V f(po). Clearly if Vf(p) = AVg(p) with A > 0, there can’t be a vector v with
v-Vf(p) >0 and v-Vgi(p) < 0. And this is the only way it can happen: if there is no
vector v with v- Vf(p) > 0 and v-Vgi(p) <0, Vf(p) must be AVg;(p) for some A > 0.

You may have noticed a slight change in the last paragraph: I started with v-Vg;(p) <
0 and then changed that < to <. In this case, the justification is this: if there was a vector
v with v-Vf(p) > 0 and v-Vg;(p) = 0 you could move it a little (at least if Vg1 (p) # 0)
to make v - Vgi(p) > 0 and still have v - Vf(p) > 0. On the other hand, we could be in
trouble in other examples if Vg;(p) = 0, because then you couldn’t use Vg;(p) to tell you
whether a certain direction goes into the feasible set or not. This slight quibble is going
to re-emerge when we talk about “constraint qualification”.

We can combine the two cases: for a local maximum we need Vf(p) = AVgi(p)
with A > 0 and A(b; — g1(p)) = 0. This might remind you of a complementary slackness
condition.

What if there’s more than one constraint? Let’s add the constraint go(x1,z2) = 21 <
by = 0. Now the maximum is at (0, v/2).



How can we tell (0,v/2) is a maximum? This is a point p; where both g1(p;) = by
and go(p1) = ba; Vf(p1) = (1,1), Vgi(p1) = (0,2v/2) and Vga(p1) = (1,0). Could there
be a vector v with v -V f(p1) > 0, v-Vgi(p1) < 0 and v - Vga(p1) < 07 No, because
ViP1) = 575 Voi1(pP1) + Vgz(p2).

On the other hand, p» = (0, —/2) also has g1 (p2) = b1 and g2(p2) = ba; but Vf(p2) =
(1,1), Vgi(p2) = (0, -2v/2) and Vga(p2) = (1,0). There is a vector v in this case, e.g.
(0,1), so p2 is not a maximum. Notice that you can’t write V f(p2) as a linear combination
of Vgi(p2) and Vga(p2) with coefficients > 0.

Theorem: Suppose aj,...a,, and c are vectors in R™. Then the following are equivalent:
(a): there are no vectors x with x-¢ >0 and all x-a; <0
(b): There are A\q,... A\, with c = A\ja; + ... \pa, and all \; > 0.

Proof: Consider the linear programming problem P:

maximize z =X-cC
subject to x-a; <0 for all 4
all x; URS

This is certainly feasible (x = 0 satisfies the constraints). There are two possibilities:

(i) (a) is true, and P has an optimal solution: the optimal value is 0.

(ii) (a) is false, and P is unbounded (because if x satisfies (a), so does 2x with a larger
value of z).

By duality, in case (i) the dual problem D also has an optimal solution, while in case
(ii) D is infeasible. But D is this:

minimize 0
subject to Z Y;a; =C
i
all y; > 0

In case (i), an optimal solution of D has y; = \; satisfying (b). In case (ii), saying D
is infeasible just says no such \; exist.

Theorem: Suppose the problem

maximize f(x)
subject to g;(x) <b; fori=1...m

has a local maximum at x = p, and that a constraint qualification (to be specified) is
satisfied at p. Then there are Aq,...\,, such that

Vfilp) - Z A\iVgi(p) =0

>0, i=1,...,m
gi(p) <b;, i=1,....m



Those equations (the first is really n, one for each coordinate) and inequalities are
called the Karush-Kuhn-Tucker (KKT) conditions. Note that I'm including the inequalities
gi(p) < b; of the problem itself as part of the KKT conditions, just to make sure we don’t
forget them. Also, if we require x; > 0, we treat that as just one other constraint (in the
form —z; < 0), rather than have a special version of the KKT conditions as the text does.

We can also deal with equality constraints as well as inequalities, with the following
modification: for an equality constraint g;(x) = b;, of course we require g;(x) = b;, but we
don’t care about the sign of the corresponding A;.

Worked Example:
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subject to g1(z1,z2) = 1 + 22 <2
g2(x1,22) = =21 + 22 <2
g3(x1,22) = o1 — T2 <2
ga(x1,22) = =21 — 29 <2

Write the KKT conditions and show that p; = (2,0) satisfies them, but ps = (0, 2)
doesn’t.
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For p; we have g1(p1) = g3(p1) = 2 while g2(p1) < 2 and g4(p1) < 2,50 Ao = Ay = 0.
The first two equations then say
4=MX 4+ A3
—4 =X — )3
The solution of these is A\; = 0, A3 = 4, and these are both > 0.
For py we have g1(p2) = g2(p2) = 0 while g3(p2) < 2 and g4(p2) < 2,80 A3 = Ay = 0.
The first two equations say
—4 =X — Ao
0=X1+ X2



The only solution of these is Ay = —2, Ay = 2. Since —2 < 0, we can’t satisfy the
KKT conditions here.

One of several possible constraint qualifications is the Linear Independence Constraint
Qualification (LICQ). A constraint g;(x) < b; is said to be binding at x = p if g;(p) = b;.
We say the LICQ holds at x = p if the gradients of the g; for the constraints that are
binding at p are linearly independent. For example, in the last example each of p; and
p2 had two binding constraints, and the gradients of the corresponding g; were linearly
independent.

The KKT conditions are necessary conditions for a local maximum. They don’t
guarantee that a point satisfying them is actually a local maximum. In this example, (2,0)
is actually not a local maximum.



