The Karush-Kuhn-Tucker Conditions

We'll be looking at nonlinear optimization with constraints:

maximize $f(x_1, \dots, x_n)$ subject to $g_i(x_1, \dots, x_n) \le b_i$ for $i = 1 \dots m$

The text does both minimize and maximize, but it's simpler just to say we'll make any minimize problem into a maximize problem.

We'll start with an example:

maximize $f(x_1, x_2) = x_1 + x_2$ subject to $g_1(x_1, x_2) = x_1^2 + x_2^2 \le b_1 = 2$

The feasible region is a disk of radius $\sqrt{2}$ centred at the origin. The global maximum (which is the only local maximum) is at $\mathbf{p}_0 = (1, 1)$. Suppose you're at some other point. How can you tell it's not a local maximum? Because there's some direction you can move that increases f and stays within the feasible region. If you're at a local maximum you can't do that.

Case 1: From a point **p** in the interior of the disk, you can go in the direction of the gradient $\nabla f(\mathbf{p})$. As long as that gradient is not **0**, f increases in that direction. On the other hand, if there was a point **p** with $\nabla f(\mathbf{p}) = 0$ we might have a local maximum there. **Case 2:** From a point **p** on the circle, you might not be able to go in the direction of the gradient, but you can go in the direction of some vector **v** that points into the circle. In order for f to increase in that direction, we want $\mathbf{v} \cdot \nabla f(p) > 0$. In order to make sure the vector points into rather than out of the circle, we want $\mathbf{v} \cdot \nabla g_1(p) < 0$.

At the maximum \mathbf{p}_0 , there's no such \mathbf{v} . Why not? $\nabla f(\mathbf{p}_0) = (1,1)$ and $\nabla g_1(\mathbf{p}_0) = (2,2) = 2\nabla f(\mathbf{p}_0)$. Clearly if $\nabla f(\mathbf{p}) = \lambda \nabla g(\mathbf{p})$ with $\lambda \ge 0$, there can't be a vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(p) > 0$ and $\mathbf{v} \cdot \nabla g_1(p) < 0$. And this is the only way it can happen: if there is no vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(\mathbf{p}) > 0$ and $\mathbf{v} \cdot \nabla g_1(p) < 0$. And this is the only way it can happen: if there is no vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(\mathbf{p}) > 0$ and $\mathbf{v} \cdot \nabla g_1(\mathbf{p}) \le 0$, $\nabla f(\mathbf{p})$ must be $\lambda \nabla g_1(\mathbf{p})$ for some $\lambda \ge 0$.

You may have noticed a slight change in the last paragraph: I started with $\mathbf{v} \cdot \nabla g_1(p) < 0$ and then changed that < to \leq . In this case, the justification is this: if there was a vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(\mathbf{p}) > 0$ and $\mathbf{v} \cdot \nabla g_1(\mathbf{p}) = 0$ you could move it a little (at least if $\nabla g_1(\mathbf{p}) \neq 0$) to make $\mathbf{v} \cdot \nabla g_1(\mathbf{p}) > 0$ and still have $\mathbf{v} \cdot \nabla f(\mathbf{p}) > 0$. On the other hand, we could be in trouble in other examples if $\nabla g_1(\mathbf{p}) = 0$, because then you couldn't use $\nabla g_1(\mathbf{p})$ to tell you whether a certain direction goes into the feasible set or not. This slight quibble is going to re-emerge when we talk about "constraint qualification".

We can combine the two cases: for a local maximum we need $\nabla f(\mathbf{p}) = \lambda \nabla g_1(\mathbf{p})$ with $\lambda \geq 0$ and $\lambda(b_1 - g_1(\mathbf{p})) = 0$. This might remind you of a complementary slackness condition.

What if there's more than one constraint? Let's add the constraint $g_2(x_1, x_2) = x_1 \le b_2 = 0$. Now the maximum is at $(0, \sqrt{2})$.

How can we tell $(0, \sqrt{2})$ is a maximum? This is a point \mathbf{p}_1 where both $g_1(\mathbf{p}_1) = b_1$ and $g_2(\mathbf{p}_1) = b_2$; $\nabla f(\mathbf{p}_1) = (1, 1)$, $\nabla g_1(\mathbf{p}_1) = (0, 2\sqrt{2})$ and $\nabla g_2(\mathbf{p}_1) = (1, 0)$. Could there be a vector \mathbf{v} with $\mathbf{v} \cdot \nabla f(\mathbf{p}_1) > 0$, $\mathbf{v} \cdot \nabla g_1(\mathbf{p}_1) \le 0$ and $\mathbf{v} \cdot \nabla g_2(\mathbf{p}_1) \le 0$? No, because $\nabla f(\mathbf{p}_1) = \frac{1}{2\sqrt{2}} \nabla g_1(\mathbf{p}_1) + \nabla g_2(\mathbf{p}_2)$.

On the other hand, $\mathbf{p}_2 = (0, -\sqrt{2})$ also has $g_1(\mathbf{p}_2) = b_1$ and $g_2(\mathbf{p}_2) = b_2$; but $\nabla f(\mathbf{p}_2) = (1, 1)$, $\nabla g_1(\mathbf{p}_2) = (0, -2\sqrt{2})$ and $\nabla g_2(\mathbf{p}_2) = (1, 0)$. There is a vector \mathbf{v} in this case, e.g. (0, 1), so \mathbf{p}_2 is not a maximum. Notice that you can't write $\nabla f(\mathbf{p}_2)$ as a linear combination of $\nabla g_1(\mathbf{p}_2)$ and $\nabla g_2(\mathbf{p}_2)$ with coefficients ≥ 0 .

Theorem: Suppose $\mathbf{a}_1, \ldots, \mathbf{a}_m$ and \mathbf{c} are vectors in \mathbf{R}^n . Then the following are equivalent: (a): there are no vectors \mathbf{x} with $\mathbf{x} \cdot \mathbf{c} > 0$ and all $\mathbf{x} \cdot \mathbf{a}_i \leq 0$

(b): There are $\lambda_1, \ldots, \lambda_m$ with $\mathbf{c} = \lambda_1 \mathbf{a}_1 + \ldots + \lambda_m \mathbf{a}_m$ and all $\lambda_i \ge 0$.

Proof: Consider the linear programming problem *P*:

 $\begin{array}{ll} \text{maximize} & z = \mathbf{x} \cdot \mathbf{c} \\ \text{subject to} & \mathbf{x} \cdot \mathbf{a}_i \leq 0 \text{ for all } i \\ & \text{all } x_j \text{ URS} \end{array}$

This is certainly feasible ($\mathbf{x} = 0$ satisfies the constraints). There are two possibilities: (i) (a) is true, and P has an optimal solution: the optimal value is 0.

(ii) (a) is false, and P is unbounded (because if \mathbf{x} satisfies (a), so does $2\mathbf{x}$ with a larger value of z).

By duality, in case (i) the dual problem D also has an optimal solution, while in case (ii) D is infeasible. But D is this:

minimize 0
subject to
$$\sum_{i=1}^{i} y_i \mathbf{a}_i = \mathbf{c}$$

all $y_i \ge 0$

In case (i), an optimal solution of D has $y_i = \lambda_i$ satisfying (b). In case (ii), saying D is infeasible just says no such λ_i exist.

Theorem: Suppose the problem

maximize $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq b_i$ for $i = 1 \dots m$

has a local maximum at $\mathbf{x} = \mathbf{p}$, and that a constraint qualification (to be specified) is satisfied at \mathbf{p} . Then there are $\lambda_1, \ldots, \lambda_m$ such that

$$\nabla f(\mathbf{p}) - \sum_{i=1}^{m} \lambda_i \nabla g_i(\mathbf{p}) = 0$$
$$\lambda_i (b_i - g_i(\mathbf{p})) = 0, \ i = 1, \dots, m$$
$$\lambda_i \ge 0, \ i = 1, \dots, m$$
$$g_i(\mathbf{p}) \le b_i, \ i = 1, \dots, m$$

Those equations (the first is really n, one for each coordinate) and inequalities are called the Karush-Kuhn-Tucker (KKT) conditions. Note that I'm including the inequalities $g_i(\mathbf{p}) \leq b_i$ of the problem itself as part of the KKT conditions, just to make sure we don't forget them. Also, if we require $x_i \geq 0$, we treat that as just one other constraint (in the form $-x_i \leq 0$), rather than have a special version of the KKT conditions as the text does.

We can also deal with equality constraints as well as inequalities, with the following modification: for an equality constraint $g_i(\mathbf{x}) = b_i$, of course we require $g_i(\mathbf{x}) = b_i$, but we don't care about the sign of the corresponding λ_i .

Worked Example:

maximize $f(x_1, x_2) = (x_1 - 1)^4 + (x_2 - 2)^2$ subject to $g_1(x_1, x_2) = x_1 + x_2 \leq 2$ $g_2(x_1, x_2) = -x_1 + x_2 \leq 2$ $g_3(x_1, x_2) = x_1 - x_2 \leq 2$ $g_4(x_1, x_2) = -x_1 - x_2 \leq 2$

Write the KKT conditions and show that $\mathbf{p}_1 = (2,0)$ satisfies them, but $\mathbf{p}_2 = (0,2)$ doesn't.

$$4(x_{1} - 1)^{3} = \lambda_{1} - \lambda_{2} + \lambda_{3} - \lambda_{4}$$

$$2(x_{2} - 2) = \lambda_{1} + \lambda_{2} - \lambda_{3} - \lambda_{4}$$

$$\lambda_{1}(2 - x_{1} - x_{2}) = 0$$

$$\lambda_{2}(2 + x_{1} - x_{2}) = 0$$

$$\lambda_{3}(2 - x_{1} + x_{2}) = 0$$

$$x_{1} + x_{2} \leq 2$$

$$-x_{1} + x_{2} \leq 2$$

$$-x_{1} + x_{2} \leq 2$$

$$-x_{1} - x_{2} \leq 2$$

$$-x_{1} - x_{2} \leq 2$$

$$\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$$

For \mathbf{p}_1 we have $g_1(\mathbf{p}_1) = g_3(\mathbf{p}_1) = 2$ while $g_2(\mathbf{p}_1) < 2$ and $g_4(\mathbf{p}_1) < 2$, so $\lambda_2 = \lambda_4 = 0$. The first two equations then say

$$4 = \lambda_1 + \lambda_3$$
$$-4 = \lambda_1 - \lambda_3$$

The solution of these is $\lambda_1 = 0$, $\lambda_3 = 4$, and these are both ≥ 0 .

For \mathbf{p}_2 we have $g_1(\mathbf{p}_2) = g_2(\mathbf{p}_2) = 0$ while $g_3(\mathbf{p}_2) < 2$ and $g_4(\mathbf{p}_2) < 2$, so $\lambda_3 = \lambda_4 = 0$. The first two equations say

$$-4 = \lambda_1 - \lambda_2$$
$$0 = \lambda_1 + \lambda_2$$

The only solution of these is $\lambda_1 = -2$, $\lambda_2 = 2$. Since -2 < 0, we can't satisfy the KKT conditions here.

One of several possible constraint qualifications is the Linear Independence Constraint Qualification (LICQ). A constraint $g_i(\mathbf{x}) \leq b_i$ is said to be **binding** at $\mathbf{x} = \mathbf{p}$ if $g_i(\mathbf{p}) = b_i$. We say the LICQ holds at $\mathbf{x} = \mathbf{p}$ if the gradients of the g_i for the constraints that are binding at \mathbf{p} are linearly independent. For example, in the last example each of \mathbf{p}_1 and \mathbf{p}_2 had two binding constraints, and the gradients of the corresponding g_i were linearly independent.

The KKT conditions are **necessary conditions** for a local maximum. They don't guarantee that a point satisfying them is actually a local maximum. In this example, (2, 0) is actually not a local maximum.