
The Karush-Kuhn-Tucker Conditions

We’ll be looking at nonlinear optimization with constraints:

maximize f(x1, . . . xn)
subject to gi(x1, . . . xn) ≤ bi for i = 1 . . .m

The text does both minimize and maximize, but it’s simpler just to say we’ll make
any minimize problem into a maximize problem.

We’ll start with an example:

maximize f(x1, x2) = x1 + x2

subject to g1(x1, x2) = x2

1 + x2

2 ≤ b1 = 2

The feasible region is a disk of radius
√

2 centred at the origin. The global maximum
(which is the only local maximum) is at p0 = (1, 1). Suppose you’re at some other point.
How can you tell it’s not a local maximum? Because there’s some direction you can move
that increases f and stays within the feasible region. If you’re at a local maximum you
can’t do that.

Case 1: From a point p in the interior of the disk, you can go in the direction of the
gradient ∇f(p). As long as that gradient is not 0, f increases in that direction. On the
other hand, if there was a point p with ∇f(p) = 0 we might have a local maximum there.

Case 2: From a point p on the circle, you might not be able to go in the direction of
the gradient, but you can go in the direction of some vector v that points into the circle.
In order for f to increase in that direction, we want v · ∇f(p) > 0. In order to make sure
the vector points into rather than out of the circle, we want v · ∇g1(p) < 0.

At the maximum p0, there’s no such v. Why not? ∇f(p0) = (1, 1) and ∇g1(p0) =
(2, 2) = 2∇f(p0). Clearly if ∇f(p) = λ∇g(p) with λ ≥ 0, there can’t be a vector v with
v · ∇f(p) > 0 and v · ∇g1(p) < 0. And this is the only way it can happen: if there is no
vector v with v · ∇f(p) > 0 and v · ∇g1(p) ≤ 0, ∇f(p) must be λ∇g1(p) for some λ ≥ 0.

You may have noticed a slight change in the last paragraph: I started with v·∇g1(p) <

0 and then changed that < to ≤. In this case, the justification is this: if there was a vector
v with v ·∇f(p) > 0 and v ·∇g1(p) = 0 you could move it a little (at least if ∇g1(p) 6= 0)
to make v · ∇g1(p) > 0 and still have v · ∇f(p) > 0. On the other hand, we could be in
trouble in other examples if ∇g1(p) = 0, because then you couldn’t use ∇g1(p) to tell you
whether a certain direction goes into the feasible set or not. This slight quibble is going
to re-emerge when we talk about “constraint qualification”.

We can combine the two cases: for a local maximum we need ∇f(p) = λ∇g1(p)
with λ ≥ 0 and λ(b1 − g1(p)) = 0. This might remind you of a complementary slackness
condition.

What if there’s more than one constraint? Let’s add the constraint g2(x1, x2) = x1 ≤
b2 = 0. Now the maximum is at (0,

√
2).



How can we tell (0,
√

2) is a maximum? This is a point p1 where both g1(p1) = b1

and g2(p1) = b2; ∇f(p1) = (1, 1), ∇g1(p1) = (0, 2
√

2) and ∇g2(p1) = (1, 0). Could there
be a vector v with v · ∇f(p1) > 0, v · ∇g1(p1) ≤ 0 and v · ∇g2(p1) ≤ 0? No, because
∇f(p1) = 1

2
√

2
∇g1(p1) + ∇g2(p2).

On the other hand, p2 = (0,−
√

2) also has g1(p2) = b1 and g2(p2) = b2; but ∇f(p2) =
(1, 1), ∇g1(p2) = (0,−2

√
2) and ∇g2(p2) = (1, 0). There is a vector v in this case, e.g.

(0, 1), so p2 is not a maximum. Notice that you can’t write ∇f(p2) as a linear combination
of ∇g1(p2) and ∇g2(p2) with coefficients ≥ 0.

Theorem: Suppose a1, . . .am and c are vectors in Rn. Then the following are equivalent:
(a): there are no vectors x with x · c > 0 and all x · ai ≤ 0
(b): There are λ1, . . . λm with c = λ1a1 + . . . λmam and all λi ≥ 0.

Proof: Consider the linear programming problem P :

maximize z = x · c
subject to x · ai ≤ 0 for all i

all xj URS

This is certainly feasible (x = 0 satisfies the constraints). There are two possibilities:
(i) (a) is true, and P has an optimal solution: the optimal value is 0.
(ii) (a) is false, and P is unbounded (because if x satisfies (a), so does 2x with a larger

value of z).
By duality, in case (i) the dual problem D also has an optimal solution, while in case

(ii) D is infeasible. But D is this:

minimize 0
subject to

∑

i

yiai = c

all yi ≥ 0

In case (i), an optimal solution of D has yi = λi satisfying (b). In case (ii), saying D

is infeasible just says no such λi exist.

Theorem: Suppose the problem

maximize f(x)
subject to gi(x) ≤ bi for i = 1 . . .m

has a local maximum at x = p, and that a constraint qualification (to be specified) is
satisfied at p. Then there are λ1, . . . λm such that

∇f(p) −
m∑

i=1

λi∇gi(p) = 0

λi(bi − gi(p)) = 0, i = 1, . . . , m

λi ≥ 0, i = 1, . . . , m

gi(p) ≤ bi, i = 1, . . . , m



Those equations (the first is really n, one for each coordinate) and inequalities are
called the Karush-Kuhn-Tucker (KKT) conditions. Note that I’m including the inequalities
gi(p) ≤ bi of the problem itself as part of the KKT conditions, just to make sure we don’t
forget them. Also, if we require xi ≥ 0, we treat that as just one other constraint (in the
form −xi ≤ 0), rather than have a special version of the KKT conditions as the text does.

We can also deal with equality constraints as well as inequalities, with the following
modification: for an equality constraint gi(x) = bi, of course we require gi(x) = bi, but we
don’t care about the sign of the corresponding λi.

Worked Example:

maximize f(x1, x2) = (x1 − 1)4+ (x2 − 2)2

subject to g1(x1, x2) = x1 + x2 ≤ 2
g2(x1, x2) = −x1 + x2 ≤ 2
g3(x1, x2) = x1 − x2 ≤ 2
g4(x1, x2) = −x1 − x2 ≤ 2

Write the KKT conditions and show that p1 = (2, 0) satisfies them, but p2 = (0, 2)
doesn’t.

4(x1 − 1)3 = λ1 − λ2 + λ3 − λ4

2(x2 − 2) = λ1 + λ2 − λ3 − λ4

λ1(2 − x1 − x2) = 0

λ2(2 + x1 − x2) = 0

λ3(2 − x1 + x2) = 0

λ4(2 + x1 + x2) = 0

x1 + x2 ≤ 2

−x1 + x2 ≤ 2

x1 − x2 ≤ 2

−x1 − x2 ≤ 2

λ1, λ2, λ3, λ4 ≥ 0

For p1 we have g1(p1) = g3(p1) = 2 while g2(p1) < 2 and g4(p1) < 2, so λ2 = λ4 = 0.
The first two equations then say

4 = λ1 + λ3

−4 = λ1 − λ3

The solution of these is λ1 = 0, λ3 = 4, and these are both ≥ 0.
For p2 we have g1(p2) = g2(p2) = 0 while g3(p2) < 2 and g4(p2) < 2, so λ3 = λ4 = 0.

The first two equations say

−4 = λ1 − λ2

0 = λ1 + λ2



The only solution of these is λ1 = −2, λ2 = 2. Since −2 < 0, we can’t satisfy the
KKT conditions here.

One of several possible constraint qualifications is the Linear Independence Constraint
Qualification (LICQ). A constraint gi(x) ≤ bi is said to be binding at x = p if gi(p) = bi.
We say the LICQ holds at x = p if the gradients of the gi for the constraints that are
binding at p are linearly independent. For example, in the last example each of p1 and
p2 had two binding constraints, and the gradients of the corresponding gi were linearly
independent.

The KKT conditions are necessary conditions for a local maximum. They don’t
guarantee that a point satisfying them is actually a local maximum. In this example, (2, 0)
is actually not a local maximum.


