Math 340: Solutions to First Midterm

Oct. 18, 2006
15] 1. Solve the following linear programming problem, using the methods studied in class: maximize
$-2 x_{1}+x_{2} \quad+x_{3}$
subject to

$$
\begin{gathered}
-x_{1}-x_{2} \leq-1 \\
2 x_{1}+x_{2}-3 x_{3} \leq 4 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Since the initial basic solution would not be feasible, we need a Phase I. We introduce an artificial variable a_{0} so the first constraint becomes $-x_{1}-x_{2}+s_{1}-a_{0}=-1$, and the temporary objective is $w=-a_{0}$. The first tableau is

w	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{0}	rhs		
1	0	0	0	0	0	0	1	0	$=$	w
0	1	2	-1	-1	0	0	0	0	$=$	z
0	0	-1	-1	0	1	0	-1	-1	$=$	s_{1}
0	0	2	1	-3	0	1	0	4	$=$	s_{2}

In the first pivot, a_{0} enters and s_{1} leaves, so that the basic solution will be feasible for the relaxed problem.

w	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{0}	rhs		
1	0	-1	-1	0	1	0	0	-1	$=$	w
0	1	2	-1	-1	0	0	0	0	$=$	z
0	0	1	1	0	-1	0	1	1	$=$	a_{0}
0	0	2	1	-3	0	1	0	4	$=$	s_{2}

Now x_{1} enters and a_{0} leaves.

w	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{0}	rhs		
1	0	0	0	0	0	0	1	0	$=$	w
0	1	0	-3	-1	2	0	-2	-2	$=$	z
0	0	1	1	0	-1	0	1	1	$=$	x_{1}
0	0	0	-1	-3	2	1	-2	2	$=$	s_{2}

Since $w=0$, we have a successful conclusion of Phase I: the basic solution is feasible for the original problem. We delete the w row and column, and continue with Phase II where z is the objective. Now x_{2} enters and x_{1} leaves.

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{0}	rhs			
1	3	0	-1	-1	0	1	1	$=$	z	
0	1	1	0	-1	0	1	1	$=$	x_{2}	
0	1	0	-3	1	1	-1	3	$=$	s_{2}	

Here x_{3} enters, but there are no ratios to calculate, so we conclude the problem is unbounded.
[15] 2. Consider the problem
maximize

$$
2 x_{1}+14 x_{2}+8 x_{3}
$$

subject to

$$
2 x_{1}+2 x_{2}+x_{3} \leq 9
$$

$$
-3 x_{1}+x_{2}+x_{3} \leq 7
$$

x_{1} URS, $x_{2}, x_{3} \geq 0$
(a) Find the tableau for the basis x_{2}, x_{3}, using the fact that $B^{-1}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$. Do not use pivoting.

$$
B^{-1} N=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ccc}
x_{1} & s_{1} & s_{2} \\
2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
x_{1} & s_{1} & s_{2} \\
5 & 1 & -1 \\
-8 & -1 & 2
\end{array}\right) \text {, which goes in the main body of }
$$

the tableau in the x_{1}, s_{1} and s_{2} columns.
$\boldsymbol{\beta}=B^{-1}\binom{9}{7}=\binom{2}{5}$ which goes in the main part of the rhs column.
$\mathbf{y}^{T}=\left(\begin{array}{ll}14 & 8\end{array}\right) B^{-1}=\left(\begin{array}{ll}6 & 2\end{array}\right)$ and $\boldsymbol{\eta}_{N B V}=\mathbf{y}^{T} N-\left(\begin{array}{ccc}x_{1} & s_{1} & s_{2} \\ 2 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}x_{1} & s_{1} & s_{2} \\ 4 & 6 & 2\end{array}\right)$ which goes in the objective row.
$z^{*}=\mathbf{c}_{B V}^{T} \boldsymbol{\beta}=68$, which goes in the rhs column of the objective row.
Thus the tableau is

z	x_{1}^{U}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	4	0	0	6	2	68	$=$	z
0	5	1	0	1	-1	2	$=$	x_{2}
0	-8	0	1	-1	2	5	$=$	x_{3}

(b) Is the basic solution for this tableau optimal? If not, what variables should enter and leave the basis in a pivot starting from this tableau?

It is not optimal, because the entry for the URS variable x_{1} in the objective row is nonzero. x_{1} should enter (decreasing), and x_{3} should leave.
[10] 3. Suppose we use the Simplex Method with the "most negative entry" rule. If no degenerate pivots occur, this will eventually stop. Why? Why might this not be true if there are degenerate pivots?

If there are no degenerate pivots, the objective increases at each pivot, and we never see the same tableau more than once. Since there are only a finite number of possible tableaus, the process must eventually stop. If there are degenerate pivots, cycling can occur, which would mean the Simplex Method goes on forever.

