
Math 340: Answers to Assignment 8

10.1.1. The initial basis consists of the slack variables s1, s2, s3, B−1 = I, and β =





6
4
2



.

First iteration: yT = [0, 0, 0]B−1 = [0, 0, 0], ηT

NBV
= yT N − cT

NBV
=

(

x1 x2 x3

−3 −1 −1
)

. x1

enters.

d = B−1


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1
2
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
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1
2
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

, ratios
6
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−−−
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



1
2
0

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1

∣

∣

∣

∣

∣

∣

6
4
2



 −→





0
1
0

∣

∣

∣

∣

∣

∣

1 −1/2 0
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∣
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∣
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

 so B−1 =





1 −1/2 0
0 1/2 0
0 0 1



, β =





s1 4
x1 2
s3 2





Second iteration: yT = [0, 3, 0]B−1 = [0, 3/2, 0], ηT

NBV = yT N−cT

NBV =
(

x2 x3 s2

−1 −5/2 3/2
)

.
x3 enters.

d = B−1





x3

1
−1
1



 =





3/2
−1/2

1



, ratios
8/3

−−−

2 ⇐

. s3 leaves.
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∣
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

 so B−1 =





1 −1/2 −3/2
0 1/2 1/2
0 0 1



,

β =





s1 1
x1 3
x3 2





Third iteration: yT = [0, 3, 1]B−1 = [0, 3/2, 5/2], ηT

NBV = yT N−cT

NBV =
(

x2 s2 s3

3/2 3/2 5/2
)

.
The current solution is optimal: x1 = 3, x2 = 0, x3 = 2, z = yT b = 11.

E.1. I’ll begin by reconstructing the tableau for the original problem:

z x1 x2 x3 s1 s2 s3 rhs

1 1 0 0 1 2 0 220 = z

0 4/3 1 0 2/3 −1/3 0 30 = x2

0 1/3 0 1 −1/3 2/3 0 20 = x3

0 −1/3 0 0 1/3 −2/3 1 10 = s3

(a). If b2 = p, this becomes

z x1 x2 x3 s1 s2 s3 rhs

1 1 0 0 1 2 0 80 + 2p = z

0 4/3 1 0 2/3 −1/3 0 160/3 − 1/3 p = x2

0 1/3 0 1 −1/3 2/3 0 −80/3 + 2/3 p = x3

0 −1/3 0 0 1/3 −2/3 1 170/3 − 2/3 p = s3



This is optimal if 40 ≤ p ≤ 85, and in this interval z = 80 + 2p. If p < 40, x3 must leave; in a
Dual Simplex pivot s1 enters.

z x1 x2 x3 s1 s2 s3 rhs

1 2 0 3 0 4 0 4p = z

0 2 1 2 0 1 0 p = x2

0 −1 0 −3 1 −2 0 80 − 2p = s1

0 0 0 1 0 0 1 30 = s3

This is optimal if 0 ≤ p ≤ 40. In this interval, z = 4p. If p < 0, x2 must leave, but there is
nothing to enter, so the problem would be infeasible.

Returning to the first tableau, if p > 85, s3 leaves; ratios are 3 for both x1 and s2. We let x1

enter:

z x1 x2 x3 s1 s2 s3 rhs

1 0 0 0 2 0 3 250 = z

0 0 1 0 2 −3 4 280 − 3p = x2

0 0 0 1 0 0 1 30 = x3

0 1 0 0 −1 2 −3 −170 + 2p = x1

This is optimal if 85 ≤ p ≤ 280/3 = 93 1/3, and in this interval z = 250. For p > 280/3, x2

must leave, and s2 enters:

z x1 x2 x3 s1 s2 s3 rhs

1 0 0 0 2 0 3 250 = z

0 0 −1/3 0 −2/3 1 −4/3 −280/3 + p = s2

0 0 0 1 0 0 1 30 = x3

0 1 2/3 0 1/3 0 −1/3 50/3 = x1

This is optimal for p ≥ 280/3, and z = 250 in this interval.

The graph of the optimal z as a function of p looks like this:
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(b). The additional constraint is x1 +x2 +x3 ≤ 40 or x1 +x2 +x3 + s4 = 40. Using the tableau
for the basis x2, x3, s3, we substitute in for the basic variables x2 and x3 to get a new row for that
tableau. The tableau becomes

z x1 x2 x3 s1 s2 s3 s4 rhs

1 1 0 0 1 2 0 0 220 = z

0 4/3 1 0 2/3 −1/3 0 0 30 = x2

0 1/3 0 1 −1/3 2/3 0 0 20 = x3

0 −1/3 0 0 1/3 −2/3 1 0 10 = s3

0 −2/3 0 0 −1/3 −1/3 0 1 −10 = s4

Because of the −10 in the rhs, this is not feasible. We need a Dual Simplex pivot, where s4

leaves the basis. The ratios are 3/2 for x1, 3 for s1, 6 for s2, so x1 enters. The next tableau is

z x1 x2 x3 s1 s2 s3 s4 rhs

1 0 0 0 1/2 3/2 0 3/2 205 = z

0 0 1 0 0 −1 0 2 10 = x2

0 0 0 1 −1/2 1/2 0 1/2 15 = x3

0 0 0 0 1/2 −1/2 1 −1/2 15 = s3

0 1 0 0 1/2 1/2 0 −3/2 15 = x1

This is optimal: x1 = 15, x2 = 10, x3 = 15, s1 = s2 = s4 = 0, s3 = 15, z = 205.

E.2. We begin with basis s1, s2, B−1 =

(

1 0
0 1

)

and β = b =

(

8
21

)

;

yT = [0, 0]B−1 = [0, 0], ηT

NBV = yT N − cT

NBV =
(

x1 x2 x3 x4

−13 −10 −12 −17
)

. x4 enters.



d = B−1

(

x4

2
5

)

=

(

2
5

)

, ratios
4 ⇐

21/5
. s1 leaves.

[

2
5

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

8
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]

−→

[

1
0

∣

∣

∣

∣

1/2 0
−5/2 1

∣

∣

∣

∣

4
1

]

so B−1 =

(

1/2 0
−5/2 1

)

, β =

(

x4 4
s2 1

)

yT = [17, 0]B−1 = [17/2, 0], ηT

NBV = yT AN −cT

NBV =
(

x1 x2 x3 s1

25/2 −3/2 5 17/2
)

. x2 enters.

d = B−1

(

x2

1
3

)

=

(

1/2
1/2

)

, ratios
8
2 ⇐

. s2 leaves.

[

1/2
1/2
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∣

∣

∣

4
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−→

[

0
1

∣

∣

∣

∣

3 −1
−5 2

∣

∣

∣

∣

3
2

]

so B−1 =

(

3 −1
−5 2

)

, β =

(

x4 3
x2 2

)

yT = [17, 10]B−1 = [1, 3], ηT

NBV
= yT N − cT

NBV
=

(

x1 x3 s1 s2

2 2 1 3
)

.
Optimal solution: x1 = 0, x2 = 2, x3 = 0, x4 = 3, z = yT b = 71.

E.3. Note that with the Professor’s basis, β = B−1b =





1
10
1



 which is feasible, so we are in

Phase II (the Professor has already done Phase I).

yT = [1, 2, 0]B−1 = [0,−1, 0], ηT

NBV = yT N − cT

NBV =
(

x3 x4 s2 s3

−2 −1 −1 0
)

. x3 enters.

d = B−1





x3

60
−4
3



 =





−14
9
1



, ratios
−−−

10/9
1 ⇐

. s1 leaves.


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∣
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∣

∣
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

 so B−1 =





14 285 100
−9 −183 −64
1 20 7



,

β =





x1 15
x2 1
x3 1





yT = [1, 2, 6]B−1 = [2, 39, 14], ηT

NBV = yT N − cT

NBV =
(

x4 s1 s2 s3

69 2 39 14
)

.
Nothing to enter, so this is the optimal solution: x1 = 15, x2 = x3 = 1, x4 = 0, z = 23.


