Math 340: Answers to Assignment 8

1.1. The initial basis consists of the slack variables $s_1, s_2, s_3, B^{-1} = I$, and $\boldsymbol{\beta} = \begin{pmatrix} 6\\4\\2 \end{pmatrix}$. First iteration: $\mathbf{y}^T = [0, 0, 0]B^{-1} = [0, 0, 0], \ \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = \begin{pmatrix} -3 & -1 & -1 \end{pmatrix}. x_1$ ars. 10.1.1.

enters. x_1

$$\mathbf{d} = B^{-1} \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, \text{ ratios } \begin{array}{c} 6\\ 2\\ 0 \end{pmatrix}, \text{ ratios } \begin{array}{c} 2\\ --- \end{array} \leftarrow s_2 \text{ leaves.} \\ \begin{bmatrix} 1\\ 1\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1/2 & 0\\ 4\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix} \begin{pmatrix} 1 & -1/2 & 0\\ 1\\ 0 & 1/2 \end{pmatrix} = \left(\begin{array}{c} 1 & -1/2 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 1 \end{pmatrix} \right), \beta = \begin{array}{c} s_1 & \begin{pmatrix} 4\\ 2\\ s_3 \end{pmatrix} \\ s_2 \end{pmatrix} \\ \begin{array}{c} x_2 & x_3 & s_2 \end{pmatrix}$$

Second iteration: $\mathbf{y}^T = [0, 3, 0]B^{-1} = [0, 3/2, 0], \ \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (-1 \quad -5/2 \quad 3/2).$ x_3 enters. x_3

$$\mathbf{d} = B^{-1} \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix} = \begin{pmatrix} 3/2\\ -1/2\\ 1 \end{pmatrix}, \text{ ratios } --- \quad . \ s_3 \text{ leaves.} \\ 2 \quad \leftarrow \\ \begin{bmatrix} 3/2\\ -1/2\\ 1 \\ 0 & 0 \\ 1/2 \\ 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \xrightarrow{} \begin{bmatrix} 0 & |1 & -1/2 & -3/2\\ 0 & |1 \\ -1/2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \xrightarrow{} \begin{bmatrix} 0 & |1 & -1/2 & -3/2\\ 0 & |1 \\ -1/2 \\ 1 \\ 2 \end{bmatrix} \xrightarrow{} \begin{bmatrix} 0 & |1 & -1/2 & -3/2\\ 0 & |1 \\ -1/2 \\ 1 \\ 2 \end{bmatrix} \text{ so } B^{-1} = \begin{pmatrix} 1 & -1/2 & -3/2\\ 0 & 1/2 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \end{bmatrix},$$

Third iteration: $\mathbf{y}^T = [0, 3, 1]B^{-1} = [0, 3/2, 5/2], \ \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = \begin{pmatrix} x_2 & s_2 & s_3 \\ 3/2 & 3/2 & 5/2 \end{pmatrix}.$ The current solution is optimal: $x_1 = 3, x_2 = 0, x_3 = 2, z = \mathbf{y}^T \mathbf{b} = 11.$

E.1. I'll begin by reconstructing the tableau for the original problem:

z	x_1	x_2	x_3	s_1	s_2	s_3	\mathbf{rhs}		
1	1	0	0	1	2	0	220	=	z
0	4/3	1	0	2/3	-1/3	0	30	=	x_2
0	1/3	0	1	-1/3	2/3	0	20	=	x_3
0	-1/3	0	0	1/3	-2/3	1	10	=	s_3
$\langle \rangle$	TC 1								

(a). If $b_2 = p$, this becomes

 β

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	1	0	0	1	2	0	80 + 2p	=	z
0	4/3	1	0	2/3	-1/3	0	160/3 - 1/3 p	=	x_2
0	1/3	0	1	-1/3	2/3	0			
0	-1/3	0	0	1/3	-2/3	1	170/3 - 2/3 p	=	s_3

This is optimal if $40 \le p \le 85$, and in this interval z = 80 + 2p. If p < 40, x_3 must leave; in a Dual Simplex pivot s_1 enters.

 z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	2	0	3	0	4	0	4p	=	z
0	2	1	2	0	1	0	p	=	x_2
0	-1	0	-3	1	-2	0	80 - 2p	=	s_1
0	0	0	1	0	0	1	30	=	s_3

This is optimal if $0 \le p \le 40$. In this interval, z = 4p. If p < 0, x_2 must leave, but there is nothing to enter, so the problem would be infeasible.

Returning to the first tableau, if p > 85, s_3 leaves; ratios are 3 for both x_1 and s_2 . We let x_1 enter:

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	0	0	2	0	3	250	=	z
0	0	1	0	2	-3	4	280 - 3p	=	x_2
0	0	0	1	0	0	1	30	=	x_3
0	1	0	0	-1	2	-3	-170 + 2p	=	x_1

This is optimal if $85 \le p \le 280/3 = 931/3$, and in this interval z = 250. For p > 280/3, x_2 must leave, and s_2 enters:

 z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	0	0	2	0	3	250	=	z
0	0	-1/3	0	-2/3	1	-4/3	-280/3 + p	=	s_2
0	0	0	1	0	0	1	30	=	x_3
0	1	2/3	0	1/3	0	-1/3	50/3	=	x_1

This is optimal for $p \ge 280/3$, and z = 250 in this interval.

The graph of the optimal z as a function of p looks like this:

(b). The additional constraint is $x_1 + x_2 + x_3 \le 40$ or $x_1 + x_2 + x_3 + s_4 = 40$. Using the tableau for the basis x_2 , x_3 , s_3 , we substitute in for the basic variables x_2 and x_3 to get a new row for that tableau. The tableau becomes

z	x_1	x_2	x_3	s_1	s_2	s_3	s_4	$^{\mathrm{rhs}}$		
1	1	0	0	1	2	0	0	220	=	z
0	4/3	1	0	2/3	-1/3	0	0	30	=	x_2
0	1/3	0	1	-1/3	2/3	0	0	20	=	x_3
0	-1/3	0	0	1/3	-2/3	1	0	10	=	s_3
0	-2/3	0	0	-1/3	-1/3	0	1	-10	=	s_4

Because of the -10 in the rhs, this is not feasible. We need a Dual Simplex pivot, where s_4 leaves the basis. The ratios are 3/2 for x_1 , 3 for s_1 , 6 for s_2 , so x_1 enters. The next tableau is

 z	x_1	x_2	x_3	s_1	s_2	s_3	s_4	\mathbf{rhs}		
1	0	0	0	1/2	3/2	0	3/2	205	=	z
0	0	1	0	0	-1	0	2	10	=	x_2
0	0	0	1	-1/2	1/2	0	1/2	15	=	x_3
0	0	0	0	1/2	-1/2	1	-1/2	15	=	s_3
0	1	0	0	1/2	1/2	0	-3/2	15	=	x_1

This is optimal: $x_1 = 15$, $x_2 = 10$, $x_3 = 15$, $s_1 = s_2 = s_4 = 0$, $s_3 = 15$, z = 205.

E.2. We begin with basis
$$s_1, s_2, B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\boldsymbol{\beta} = \mathbf{b} = \begin{pmatrix} 8 \\ 21 \end{pmatrix}$;
 $x_1 \quad x_2 \quad x_3 \quad x_4$
 $\mathbf{y}^T = [0,0]B^{-1} = [0,0], \ \boldsymbol{\eta}_{NBV}^T = \mathbf{y}^T N - \mathbf{c}_{NBV}^T = \begin{pmatrix} -13 & -10 & -12 & -17 \end{pmatrix}$. x_4 enters.

$$\mathbf{d} = B^{-1} \begin{pmatrix} 2\\ 2\\ 5 \end{pmatrix} = \begin{pmatrix} 2\\ 5 \end{pmatrix}, \text{ ratios } \frac{4}{21/5} \Leftrightarrow .s_1 \text{ leaves.}$$

$$\begin{bmatrix} 2\\ 5\\ 0\\ 1 \end{bmatrix} \begin{pmatrix} 1\\ 21 \end{bmatrix} \longrightarrow \begin{bmatrix} 1\\ 0\\ -5/2 \end{bmatrix} \begin{pmatrix} 1/2\\ 0\\ -5/2 \end{bmatrix} \begin{pmatrix} 4\\ 1 \end{bmatrix} \text{ so } B^{-1} = \begin{pmatrix} 1/2 & 0\\ -5/2 \end{bmatrix}, \beta = \frac{x_4}{s_2} \begin{pmatrix} 4\\ 1 \end{pmatrix}$$

$$\mathbf{y}^T = [17, 0]B^{-1} = [17/2, 0], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T A_N - \mathbf{c}^T_{NBV} = (25/2 - 3/2 - 5 - 17/2). x_2 \text{ enters.}$$

$$\mathbf{d} = B^{-1} \begin{pmatrix} 1\\ 3 \end{pmatrix} = \begin{pmatrix} 1/2\\ 1/2 \end{pmatrix}, \text{ ratios } \frac{8}{2} \Leftrightarrow .s_2 \text{ leaves.}$$

$$\begin{bmatrix} 1/2\\ 1/2\\ -5/2 \end{bmatrix} \begin{pmatrix} 1/2\\ 1/2 \end{pmatrix}, \text{ ratios } \frac{8}{2} \Leftrightarrow .s_2 \text{ leaves.}$$

$$\begin{bmatrix} 1/2\\ 1/2\\ -5/2 \end{bmatrix} \begin{pmatrix} 1/2\\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0\\ 1\\ -5 \end{bmatrix} \begin{pmatrix} 3\\ -5 \end{bmatrix} \begin{pmatrix} 3\\ 2\\ 2 \end{bmatrix} \text{ so } B^{-1} = \begin{pmatrix} 3\\ -5 \end{bmatrix}, \beta = \frac{x_4}{x_2} \begin{pmatrix} 3\\ 2 \end{pmatrix}$$

$$\mathbf{y}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = (2 - 2 - 1 - 3).$$

$$\mathbf{P}^T = [17, 10]B^{-1} = [1, 3], \boldsymbol{\eta}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = \mathbf{y}^T N - \mathbf{c}^T_{NBV} = \mathbf{z}^T N - \mathbf{z}^T N - \mathbf{z}^T N = \mathbf{z}^T N + \mathbf{z}^T N + \mathbf{z}^T N = \mathbf{z}^T N + \mathbf{z}$$

Phase II (the Professor has already done Phase I).

$$\mathbf{y}^{T} = [1, 2, 0]B^{-1} = [0, -1, 0], \ \boldsymbol{\eta}_{NBV}^{T} = \mathbf{y}^{T}N - \mathbf{c}_{NBV}^{T} = \begin{pmatrix} 2 & -1 & -1 & 0 \end{pmatrix}, \ x_{3} \text{ enters.}$$

$$\mathbf{d} = B^{-1} \begin{pmatrix} 60 \\ -4 \\ 3 \end{pmatrix} = \begin{pmatrix} -14 \\ 9 \\ 1 \end{pmatrix}, \ \text{ratios} \ 10/9 & \text{s}_{1} \text{ leaves.}$$

$$\begin{bmatrix} -14 & 0 & 5 & 2 & | & 1 \\ 9 & 0 & -3 & -1 & | & 10 \\ 1 & | & 1 & 20 & 7 & | & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & | & 14 & 285 & 100 & | & 15 \\ 0 & | & -9 & -183 & -64 & | & 1 \\ 1 & | & 1 & 20 & 7 & | & 1 \end{bmatrix} \text{ so } B^{-1} = \begin{pmatrix} 14 & 285 & 100 \\ -9 & -183 & -64 \\ 1 & 20 & 7 & | & 1 \end{bmatrix},$$

$$\beta = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

 $\mathbf{y}^{T} = [1, 2, 6]B^{-1} = [2, 39, 14], \ \boldsymbol{\eta}^{T}_{NBV} = \mathbf{y}^{T}N - \mathbf{c}^{T}_{NBV} = \begin{pmatrix} 69 & 2 & 39 & 14 \end{pmatrix}.$ Nothing to enter, so this is the optimal solution: $x_{1} = 15, \ x_{2} = x_{3} = 1, \ x_{4} = 0, \ z = 23.$