Math 340: Answers to Assignment 8

10.1.1. The initial basis consists of the slack variables $s_{1}, s_{2}, s_{3}, B^{-1}=I$, and $\boldsymbol{\beta}=\left(\begin{array}{l}6 \\ 4 \\ 2\end{array}\right)$.

First iteration: $\left.\mathbf{y}^{T}=[0,0,0] B^{-1}=[0,0,0], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\begin{array}{ccc}x 1 & x 2 & x 3 \\ -3 & -1 & -1\end{array}\right) \cdot x_{1}$ enters.

$$
\begin{gathered}
x_{1} \\
\mathbf{d}=B^{-1}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \text { ratios } \begin{array}{c}
6 \\
--- \\
2
\end{array} \Leftarrow . s_{2} \text { leaves. } \\
{\left[\begin{array}{l|lll|l}
1 & 1 & 0 & 0 & 6 \\
2 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{l|ccc|c}
0 & 1 & -1 / 2 & 0 & 4 \\
1 & 0 & 1 / 2 & 0 & 2 \\
0 & 0 & 1 & 2
\end{array}\right] \text { so } B^{-1}=\left(\begin{array}{ccc}
1 & -1 / 2 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right), \beta=x_{1}\left(\begin{array}{l}
4 \\
2 \\
s_{3}
\end{array}\right)}
\end{gathered}
$$

Second iteration: $\mathbf{y}^{T}=[0,3,0] B^{-1}=[0,3 / 2,0], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{ccc}-1 & -5 / 2 & 3 / 2\end{array}\right)$. x_{3} enters.

$$
\text { The current solution is optimal: } x_{1}=3, x_{2}=0, x_{3}=2, z=\mathbf{y}^{T} \mathbf{b}=11 \text {. }
$$

E.1. I'll begin by reconstructing the tableau for the original problem:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	1	0	0	1	2	0	220	$=$	z
0	$4 / 3$	1	0	$2 / 3$	$-1 / 3$	0	30	$=$	x_{2}
0	$1 / 3$	0	1	$-1 / 3$	$2 / 3$	0	20	$=$	x_{3}
0	$-1 / 3$	0	0	$1 / 3$	$-2 / 3$	1	10	$=$	s_{3}

(a). If $b_{2}=p$, this becomes

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	1	0	0	1	2	0	$80+2 p$	$=$	z
0	$4 / 3$	1	0	$2 / 3$	$-1 / 3$	0	$160 / 3-1 / 3 p$	$=$	x_{2}
0	$1 / 3$	0	1	$-1 / 3$	$2 / 3$	0	$-80 / 3+2 / 3 p$	$=$	x_{3}
0	$-1 / 3$	0	0	$1 / 3$	$-2 / 3$	1	$170 / 3-2 / 3 p$	$=$	s_{3}

$$
\begin{aligned}
& \mathbf{d}=B^{-1}\left(\begin{array}{c}
x_{3} \\
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 / 2 \\
-1 / 2 \\
1
\end{array}\right) \text {, ratios } \begin{array}{c}
8 / 3 \\
2
\end{array} \Leftarrow . s_{3} \text { leaves. } \\
& {\left[\begin{array}{c|ccc|c}
3 / 2 & 1 & -1 / 2 & 0 & 4 \\
-1 / 2 & 0 & 1 / 2 & 0 & 2 \\
1 & 0 & 0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{c|ccc|c}
0 & 1 & -1 / 2 & -3 / 2 & 1 \\
0 & 0 & 1 / 2 & 1 / 2 & 3 \\
1 & 0 & 0 & 1 & 2
\end{array}\right] \text { so } B^{-1}=\left(\begin{array}{ccc}
1 & -1 / 2 & -3 / 2 \\
0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1
\end{array}\right),} \\
& \beta=\begin{array}{l}
s_{1} \\
x_{1} \\
x_{3}
\end{array}\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
\end{aligned}
$$

This is optimal if $40 \leq p \leq 85$, and in this interval $z=80+2 p$. If $p<40, x_{3}$ must leave; in a Dual Simplex pivot s_{1} enters.

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	2	0	3	0	4	0	$4 p$	$=$	z
0	2	1	2	0	1	0	p	$=$	x_{2}
0	-1	0	-3	1	-2	0	$80-2 p$	$=$	s_{1}
0	0	0	1	0	0	1	30	$=$	s_{3}

This is optimal if $0 \leq p \leq 40$. In this interval, $z=4 p$. If $p<0, x_{2}$ must leave, but there is nothing to enter, so the problem would be infeasible.

Returning to the first tableau, if $p>85, s_{3}$ leaves; ratios are 3 for both x_{1} and s_{2}. We let x_{1} enter:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	0	0	2	0	3	250	$=$	z
0	0	1	0	2	-3	4	$280-3 p$	$=$	x_{2}
0	0	0	1	0	0	1	30	$=$	x_{3}
0	1	0	0	-1	2	-3	$-170+2 p$	$=$	x_{1}

This is optimal if $85 \leq p \leq 280 / 3=931 / 3$, and in this interval $z=250$. For $p>280 / 3, x_{2}$ must leave, and s_{2} enters:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	0	0	2	0	3	250	$=$	z
0	0	$-1 / 3$	0	$-2 / 3$	1	$-4 / 3$	$-280 / 3+p$	$=$	s_{2}
0	0	0	1	0	0	1	30	$=$	x_{3}
0	1	$2 / 3$	0	$1 / 3$	0	$-1 / 3$	$50 / 3$	$=$	x_{1}

This is optimal for $p \geq 280 / 3$, and $z=250$ in this interval.

The graph of the optimal z as a function of p looks like this:

(b). The additional constraint is $x_{1}+x_{2}+x_{3} \leq 40$ or $x_{1}+x_{2}+x_{3}+s_{4}=40$. Using the tableau for the basis x_{2}, x_{3}, s_{3}, we substitute in for the basic variables x_{2} and x_{3} to get a new row for that tableau. The tableau becomes

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	s_{4}	rhs		
1	1	0	0	1	2	0	0	220	$=$	z
0	$4 / 3$	1	0	$2 / 3$	$-1 / 3$	0	0	30	$=$	x_{2}
0	$1 / 3$	0	1	$-1 / 3$	$2 / 3$	0	0	20	$=$	x_{3}
0	$-1 / 3$	0	0	$1 / 3$	$-2 / 3$	1	0	10	$=$	s_{3}
0	$-2 / 3$	0	0	$-1 / 3$	$-1 / 3$	0	1	-10	$=$	s_{4}

Because of the -10 in the rhs, this is not feasible. We need a Dual Simplex pivot, where s_{4} leaves the basis. The ratios are $3 / 2$ for $x_{1}, 3$ for $s_{1}, 6$ for s_{2}, so x_{1} enters. The next tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	s_{4}	rhs		
1	0	0	0	$1 / 2$	$3 / 2$	0	$3 / 2$	205	$=$	z
0	0	1	0	0	-1	0	2	10	$=$	x_{2}
0	0	0	1	$-1 / 2$	$1 / 2$	0	$1 / 2$	15	$=$	x_{3}
0	0	0	0	$1 / 2$	$-1 / 2$	1	$-1 / 2$	15	$=$	s_{3}
0	1	0	0	$1 / 2$	$1 / 2$	0	$-3 / 2$	15	$=$	x_{1}

This is optimal: $x_{1}=15, x_{2}=10, x_{3}=15, s_{1}=s_{2}=s_{4}=0, s_{3}=15, z=205$.
E.2. We begin with basis $s_{1}, s_{2}, B^{-1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ and $\boldsymbol{\beta}=\mathbf{b}=\binom{8}{21}$;

$$
\left.\mathbf{y}^{T}=[0,0] B^{-1}=[0,0], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\begin{array}{cccc}
x 1 & x 2 & x 3 & x 4 \\
(-13 & -10 & -12 & -17
\end{array}\right) . x_{4} \text { enters. }
$$

$$
\begin{aligned}
& \mathbf{d}=B^{-1}\binom{x_{4}}{5}=\binom{2}{5} \text {, ratios } \begin{array}{c}
4 \\
21 / 5
\end{array} \Leftarrow . s_{1} \text { leaves. } \\
& {\left[\begin{array}{l|ll|c}
2 & 1 & 0 & 8 \\
5 & 0 & 1 & 21
\end{array}\right] \longrightarrow\left[\begin{array}{c|cc|c}
1 & 1 / 2 & 0 & 4 \\
0 & -5 / 2 & 1 & 1
\end{array}\right] \text { so } B^{-1}=\left[\begin{array}{cc}
1 / 2 & 0 \\
-5 / 2 & 1
\end{array}\right), \beta={ }_{x 1}{ }_{s_{4}}\binom{4}{1} ~\left(\begin{array}{ll}
x 2 & x 3
\end{array} s_{1}\right.} \\
& \mathbf{y}^{T}=[17,0] B^{-1}=[17 / 2,0], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} A_{N}-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{llll}
25 / 2 & -3 / 2 & 5 & 17 / 2
\end{array}\right) . x_{2} \text { enters. } \\
& x_{2} \\
& \mathbf{d}=B^{-1}\binom{1}{3}=\binom{1 / 2}{1 / 2}, \operatorname{ratios} \begin{array}{l}
8 \\
2
\end{array} \cdot s_{2} \text { leaves. } \\
& {\left[\begin{array}{c|cc|c}
1 / 2 & 1 / 2 & 0 & 4 \\
1 / 2 & -5 / 2 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{c|cc|c}
0 & 3 & -1 & 3 \\
1 & -5 & 2 & 2
\end{array}\right] \text { so } B^{-1}=\left(\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right), \beta={ }_{x} x_{4}\binom{3}{2}} \\
& x 1 \quad x 3 \quad s_{1} \quad s_{2} \\
& \mathbf{y}^{T}=[17,10] B^{-1}=[1,3], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{llll}
2 & 2 & 1 & 3
\end{array}\right) \text {. } \\
& \text { Optimal solution: } x_{1}=0, x_{2}=2, x_{3}=0, x_{4}=3, z=\mathbf{y}^{T} \mathbf{b}=71 \text {. }
\end{aligned}
$$

E.3. Note that with the Professor's basis, $\boldsymbol{\beta}=B^{-1} \mathbf{b}=\left(\begin{array}{c}1 \\ 10 \\ 1\end{array}\right)$ which is feasible, so we are in Phase II (the Professor has already done Phase I).

$$
\begin{aligned}
& \left.\mathbf{y}^{T}=[1,2,0] B^{-1}=[0,-1,0], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\begin{array}{cccc}
x 3 & x 4 & s_{2} & s_{3} \\
-2 & -1 & -1 & 0
\end{array}\right) \cdot x_{3} \text { enters. } \\
& \left.\mathbf{d}=B^{-1}\left(\begin{array}{c}
x_{3} \\
60 \\
-4 \\
3
\end{array}\right)=\left(\begin{array}{c}
-14 \\
9 \\
1
\end{array}\right), \text { ratios } \begin{array}{ccc}
--- \\
10 / 9 & \ldots & \\
1
\end{array}\right) \text { leaves. } \\
& {\left[\begin{array}{c|ccc|c}
-14 & 0 & 5 & 2 & 1 \\
9 & 0 & -3 & -1 & 10 \\
1 & 1 & 20 & 7 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{c|ccc|c}
0 & 14 & 285 & 100 & 15 \\
0 & -9 & -183 & -64 & 1 \\
1 & 1 & 20 & 7 & 1
\end{array}\right] \text { so } B^{-1}=\left(\begin{array}{ccc}
14 & 285 & 100 \\
-9 & -183 & -64 \\
1 & 20 & 7
\end{array}\right),} \\
& \beta=\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\left(\begin{array}{c}
15 \\
1 \\
1
\end{array}\right) \\
& \left.\mathbf{y}^{T}=[1,2,6] B^{-1}=[2,39,14], \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\begin{array}{cccc}
x 4 & s_{1} & s_{2} & s_{3} \\
69 & 2 & 39 & 14
\end{array}\right) \text {. } \\
& \text { Nothing to enter, so this is the optimal solution: } x_{1}=15, x_{2}=x_{3}=1, x_{4}=0, z=23 \text {. }
\end{aligned}
$$

