Assignment 8

Due Wednesday, Nov. 15
10.1.1
E.1. A manufacturer produces coats, jackets and sweaters. The numbers of each of these to produce in a week, x_{1} to x_{3}, are found by solving the linear programming problem

$$
\begin{array}{ll}
\operatorname{maximize} z= & 6 x_{1}+4 x_{2}+5 x_{3} \\
\text { subject to } & 3 x_{1}+2 x_{2}+x_{3} \leq 80 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 70 \\
x_{3} \leq 30 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

where the right sides of the three constraints are the amounts of time available each week on three machines M1, M2, M3. The optimal solution is found with basis x_{2}, x_{3}, s_{3}, and has

$$
B^{-1}=\left(\begin{array}{ccc}
2 / 3 & -1 / 3 & 0 \\
-1 / 3 & 2 / 3 & 0 \\
1 / 3 & -2 / 3 & 1
\end{array}\right)
$$

(a). Suppose the amount of time available on M2 is p instead of 70. For what values of p would the basis above still give an optimal solution? How would the values of the variables and the objective depend on p in this interval? Find all the intervals for p in which different bases give optimal solutions. Sketch the graph of the optimal objective value as a function of p.
(b). Suppose we add (to the original problem) the additional requirement that no more than 40 items in total can be produced in a week. What would be the new optimal solution?
E.2. Solve, using the Revised Simplex Method:

$$
\begin{array}{ll}
\operatorname{maximize} z= & 13 x_{1}+10 x_{2}+12 x_{3}+17 x_{4} \\
\text { subject to } & 3 x_{1}+x_{2}+2 x_{3}+2 x_{4} \leq 8 \\
& 4 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 21 \\
& \text { all } x_{j} \geq 0
\end{array}
$$

E.3. Professor Bumble was trying to solve the problem

$$
\begin{aligned}
\operatorname{maximize} z= & x_{1}+2 x_{2}+6 x_{3} \\
\text { subject to } & -x_{1}+5 x_{2}+60 x_{3}+x_{4} \leq 50 \\
& -x_{1}-2 x_{2}-4 x_{3}+x_{4} \leq-21 \\
& 3 x_{1}+5 x_{2}+3 x_{3}+2 x_{4} \leq 53 \\
& \text { all } x_{j} \geq 0
\end{aligned}
$$

He had arrived at the basis x_{1}, x_{2}, s_{1}, where

$$
B^{-1}=\left(\begin{array}{ccc}
0 & 5 & 2 \\
0 & -3 & -1 \\
1 & 20 & 7
\end{array}\right)
$$

and then was called away to an emergency meeting of the faculty. Finish the Professor's work, using the Revised Simplex Method, starting with his basis.

