Math 340: Answers to Assignment 7

6.8.2(a). The optimal tableau for Sugarco is in Table 11 on p. 288. The shadow prices for the constraints are the entries in the objective row for the slack variables s_{1} and $s_{2}: y_{1}=4, y_{2}=1$.
(b). With $B^{-1}=\left(\begin{array}{cc}3 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right)$, adding 10 to b_{1} adds $\binom{15}{-5}$ to $\boldsymbol{\beta}$, making the basic solution $x_{3}=40, x_{2}=20$. This is still feasible, so the optimal basis doesn't change. The increase in z is $10 y_{1}=40$, so the profit becomes 340ϕ.
(c). This time we're decreasing b_{1} by 10; again the basic solution is feasible, and the optimal basis doesn't change. The decrease in z is 40 , so the profit becomes 260ϕ.
(d). This time we decrease b_{1} by 20 , adding $\binom{-30}{10}$ to $\boldsymbol{\beta}$ and making the basic solution $x_{3}=-5$, $x_{2}=35$. The z value in the basic solution is $300-20 y_{1}=220$. The basic solution is not feasible, so we do a Dual Simplex pivot. From the tableau

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	3	0	0	4	1	220	$=$	z
0	$1 / 2$	0	1	$3 / 2$	$-1 / 2$	-5	$=$	x_{3}
0	$1 / 2$	1	0	$-1 / 2$	$1 / 2$	35	$=$	x_{2}

x_{3} leaves, and s_{2} enters (with the only negative entry in the x_{3} row). The next tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	4	0	2	7	0	210	$=$	z
0	-1	0	-2	-3	1	10	$=$	s_{2}
0	1	1	1	1	0	30	$=$	x_{2}

which is optimal. The profit in the optimal solution is 210ϕ.
6.8.7(a). In problem 6.3.8(b) (assignment 5) we found that the current basis would be optimal if the required HIW exposure is between 4 million and 84 million. In this case with (in my version of the problem) $\mathbf{b}=\binom{-40}{-24}$ and $\mathbf{y}^{T}=(5,7.5)$, my z value is $\mathbf{y}^{T} \mathbf{b}=-380$, i.e. the cost is $\$ 380,000$.
(b). With $\mathbf{b}=\binom{-28}{-20}, \boldsymbol{\beta}=\left(\begin{array}{cc}-.15 & .025 \\ .025 & -.0875\end{array}\right)\binom{-28}{-20}=\binom{3.7}{1.05}$ which is feasible and thus optimal. The increase of 4 in b_{2} increases my version of the objective by $7.5 \times 4=30$ to -290 , i.e. the cost is $\$ 290,000$.
6.8.9. In the Dakota problem (page 276), the allowable increase for b_{2} (the finishing hours) is 4 and the allowable increase for b_{3} (the carpentry hours) is 2 . In the 100% rule, $\sum r_{j}=2 / 4+1 / 2=1$, so the basis will still be optimal (or of course you could just calculate $B^{-1} \mathbf{b}=\left(\begin{array}{c}20 \\ 8 \\ 2.5\end{array}\right)$). The shadow prices being 0,10 and 10 , the increase in z is $10 \times 2+10 \times 1=30$, so the new optimal z value is 310.
6.11.1. The initial tableau (after putting the constraints into \leq form) is

| z | x_{1} | x_{2} | x_{3} | s_{1} | s_{2} | rhs | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 1 | 2 | 0 | 1 | 0 | 0 | 0 | $=$ | z |
| 0 | -1 | -1 | 1 | 1 | 0 | -5 | $=$ | s_{1} |
| 0 | -1 | 2 | -4 | 0 | 1 | -8 | $=$ | s_{2} |

This is suitable for the Dual Simplex method since the initial basic solution is feasible for the dual but not the primal. s_{2} leaves, ratios are $2 / 1$ for x_{1} and $1 / 4$ for x_{3}, so x_{3} enters.

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	$7 / 4$	$1 / 2$	0	0	$1 / 4$	-2	$=$	z
0	$-5 / 4$	$-1 / 2$	0	1	$1 / 4$	-7	$=$	s_{1}
0	$1 / 4$	$-1 / 2$	1	0	$-1 / 4$	2	$=$	x_{3}

Now s_{1} leaves, ratios are $7 / 5$ for x_{1} and $1 / 1$ for x_{2}, so x_{2} enters.

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	$1 / 2$	0	0	1	$1 / 2$	-9	$=$	z
0	$5 / 2$	1	0	-2	$-1 / 2$	14	$=$	x_{2}
0	$3 / 2$	0	1	-1	$-1 / 2$	9	$=$	x_{3}

This is optimal: $x_{1}=0, x_{2}=14, x_{3}=9, z=-9$.
6.11.3. With the new $b_{1}=20$ instead of $48, \boldsymbol{\beta}=B^{-1} \mathbf{b}=\left(\begin{array}{c}-4 \\ 8 \\ 2\end{array}\right)$, and the z value is $\mathbf{y}^{T} \mathbf{b}=280$. Thus the initial tableau is

| z | x_{1} | x_{2} | x_{3} | s_{1} | s_{2} | s_{3} | rhs | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 5 | 0 | 0 | 10 | 10 | 280 | $=$ | z |
| 0 | 0 | -2 | 0 | 1 | 2 | -8 | -4 | $=$ | s_{1} |
| 0 | 0 | -2 | 1 | 0 | 2 | -4 | 8 | $=$ | x_{3} |
| 0 | 1 | 1.25 | 0 | 0 | -.5 | 1.5 | 2 | $=$ | x_{1} |

We use the Dual Simplex method: s_{1} leaves, the ratios are $5 / 2$ for x_{2} and $10 / 8$ for s_{3}, so s_{3} enters. The next tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	2.5	0	1.25	12.5	0	275	$=$	z
0	0	.25	0	-.125	-.25	1	0.5	$=$	s_{3}
0	0	-1	1	-.5	1	0	10	$=$	x_{3}
0	1	.875	0	.1875	-.125	0	1.25	$=$	x_{1}

This is optimal: $x_{1}=1.25, x_{2}=0, x_{3}=10, z=275$.
E.1. Note that $x_{2}=-1$ is not a problem because x_{2} is unrestricted in sign (URS). Plugging the given solution in to the constraints, we get $s_{1}=2, s_{2}=0, s_{3}=0$ so this is feasible for the primal. By Complementary Slackness we must have $\eta_{1}=\eta_{2}=\eta_{4}=y_{1}=0$. Note also that y_{3} is URS since the third constraint is an inequality. The equations of the dual now say

$$
\begin{aligned}
3 y_{2} & =6 \\
y_{2}+y_{3} & =1 \\
-y_{2}+y_{3}-\eta_{3} & =-1 \\
y_{3} & =-1
\end{aligned}
$$

The first equation says $y_{2}=2$, the fourth says $y_{3}=-1$, the second is satsified, but the third (with $y_{2}=2$ and $y_{3}=-1$) says $\eta_{3}=-2$. This is not feasible (x_{3} is an ordinary " ≥ 0 " variable, and thus so is η_{3}). So the solution is not optimal.
E.2(a). Using the proposed solution of the primal, we get $s_{1}=b_{1}-6-4 a_{13}$ (which must be 0 since this constraint is an equality) and $s_{2}=2$. Using the proposed solution of the dual, we get $\eta_{1}=-1-c_{1}, \eta_{2}=-a_{12}-2, \eta_{3}=-a_{13}-1$. By complementary slackness, η_{1} and η_{3} must be 0 , while η_{2} can be anything $\geq 0 ; y_{1}$ is allowed to be negative since the first constraint is an equality, and y_{2} must be 0 (which it is). Thus $c_{1}=-1, a_{13}=-1, a_{12} \leq 2$, and $b_{1}=6+4 a_{13}=2$.
(b). Any student using the Simplex Method will find an optimal solution which is basic. Since P has two constraints, a basic solution of P has only two basic variables, and thus at most two variables can be nonzero. But the Professor's solution has three nonzero variables: x_{1}, x_{3} and s_{2}. Thus P does not have a unique optimal solution, and since the Professor's solution for P is not a basic solution no student will obtain it. They will obtain his solution for the dual D : by complementary slackness, any optimal solution of D must have $\eta_{1}=\eta_{3}=y_{2}=0$, and $y_{1}=c_{1}=-1$.
E.3. If $y_{2}=3$ in an optimal solution of the dual, complementary slackness says any optimal solution of the primal must have $s_{2}=0$, i.e. $9 x_{1}-6 x_{2}=6$, or $x_{1}=(2 / 3)\left(x_{2}+1\right)$. Substituting this in, the first equation of the primal then says $4+x_{3}+s_{1}=4$, or $x_{3}+s_{1}=0$. Since $x_{3} \geq 0$ and $s_{1} \geq 0$, the only way this can happen is $x_{3}=s_{1}=0$. And then the third equation of the primal says $-2+s_{3}=-1$, or $s_{3}=1$.

Now by complementary slackness we must have $y_{3}=0$, and (since x_{1} and x_{2} are URS) $\eta_{1}=\eta_{2}=0$. The equations of the dual then say

$$
\begin{aligned}
6 y_{1}+27+0 & =c_{1} \\
-4 y_{1}-18+0 & =-34 \\
3 y_{1}-\eta_{3} & =c_{3}
\end{aligned}
$$

From the second equation, $y_{1}=(-34+18) /(-4)=4$. Then the first and third say $c_{1}=51$ and $c_{3}=12-\eta_{3}$. The optimal objective value can be calculated as $4 y_{1}+6 y_{2}-y_{3}=34$. The only thing we can't determine about the problem is c_{3} : all we can say there is $c_{3} \leq 12$ since $\eta_{3} \geq 0$.

