Math 340: Answers to Assignment 7

- The optimal tableau for Sugarco is in Table 11 on p. 288. The shadow prices for the
- constraints are the entries in the objective row for the slack variables s_1 and s_2 : $y_1 = 4$, $y_2 = 1$. (b). With $B^{-1} = \begin{pmatrix} 3/2 & -1/2 \\ -1/2 & 1/2 \end{pmatrix}$, adding 10 to b_1 adds $\begin{pmatrix} 15 \\ -5 \end{pmatrix}$ to $\boldsymbol{\beta}$, making the basic solution $x_3 = 40$, $x_2 = 20$. This is still feasible, so the optimal basis doesn't change. The increase in z is $10y_1 = 40$, so the profit becomes 340 ¢.
- This time we're decreasing b_1 by 10; again the basic solution is feasible, and the optimal basis doesn't change. The decrease in z is 40, so the profit becomes 260 ϕ .
- (d). This time we decrease b_1 by 20, adding $\begin{pmatrix} -30 \\ 10 \end{pmatrix}$ to β and making the basic solution $x_3 = -5$, $x_2 = 35$. The z value in the basic solution is $300 20y_1 = 220$. The basic solution is not feasible, so we do a Dual Simplex pivot. From the tableau

z	x_1	x_2	x_3	s_1	s_2	rhs		
1	3	0	0	4	1	220	=	z
0	1/2	0	1	3/2	-1/2	-5	=	x_3
0	1/2	1	0	-1/2	1/2	35	=	x_2

 x_3 leaves, and s_2 enters (with the only negative entry in the x_3 row). The next tableau is

z	x_1	x_2	x_3	s_1	s_2	$_{ m rhs}$		
1	4	0	2	7	0	210	=	z
0	-1	0	-2	-3	1	10	=	s_2
0	1	1	1	1	0	30	=	x_2

which is optimal. The profit in the optimal solution is 210 ϕ .

- **6.8.7(a).** In problem 6.3.8(b) (assignment 5) we found that the current basis would be optimal if the required HIW exposure is between 4 million and 84 million. In this case with (in my version of
- the problem) $\mathbf{b} = \begin{pmatrix} -40 \\ -24 \end{pmatrix}$ and $\mathbf{y}^T = (5, 7.5)$, my z value is $\mathbf{y}^T \mathbf{b} = -380$, i.e. the cost is \$380,000. (b). With $\mathbf{b} = \begin{pmatrix} -28 \\ -20 \end{pmatrix}$, $\boldsymbol{\beta} = \begin{pmatrix} -.15 & .025 \\ .025 & -.0875 \end{pmatrix} \begin{pmatrix} -28 \\ -20 \end{pmatrix} = \begin{pmatrix} 3.7 \\ 1.05 \end{pmatrix}$ which is feasible and thus optimal. The increase of 4 in b_2 increases my version of the objective by $7.5 \times 4 = 30$ to -290, i.e. the cost is \$290,000.
- In the Dakota problem (page 276), the allowable increase for b_2 (the finishing hours) is 4 6.8.9. and the allowable increase for b_3 (the carpentry hours) is 2. In the 100% rule, $\sum r_j = 2/4 + 1/2 = 1$,

so the basis will still be optimal (or of course you could just calculate $B^{-1}\mathbf{b} = \begin{pmatrix} 20 \\ 8 \\ 25 \end{pmatrix}$). The shadow

prices being 0, 10 and 10, the increase in z is $10 \times 2 + 10 \times 1 = 30$, so the new optimal z value is 310.

The initial tableau (after putting the constraints into \leq form) is 6.11.1.

z	x_1	x_2	x_3	s_1	s_2	rhs			
1	2	0	1	0	0	0	=	z	
0	-1	-1	1	1	0	$ \begin{array}{c c} -5 \\ -8 \end{array} $	=	s_1	
_	-1	0	4	0	1	0		_	

This is suitable for the Dual Simplex method since the initial basic solution is feasible for the dual but not the primal. s_2 leaves, ratios are 2/1 for x_1 and 1/4 for x_3 , so x_3 enters.

z	x_1	x_2	x_3	s_1	s_2	rhs		
1	7/4	1/2	0	0	1/4	-2	=	z
0	-5/4	-1/2	0	1	1/4	-7	=	s_1
0	1/4	-1/2	1	0	-1/4	2	=	x_3

Now s_1 leaves, ratios are 7/5 for x_1 and 1/1 for x_2 , so x_2 enters.

z	x_1	x_2	x_3	s_1	s_2	$_{ m rhs}$			
1	1/2	0	0	1	1/2	-9	=	z	
0	5/2	1	0	-2	-1/2	14	=	x_2	
0	3/2	0	1	-1	-1/2	9	=	x_3	
This is optimal: $x_1 = 0$, $x_2 = 14$, $x_3 = 9$, $z = -9$.									

6.11.3. With the new
$$b_1 = 20$$
 instead of 48, $\boldsymbol{\beta} = B^{-1}\mathbf{b} = \begin{pmatrix} -4 \\ 8 \\ 2 \end{pmatrix}$, and the z value is $\mathbf{y}^T\mathbf{b} = 280$.

Thus the initial tableau is

z	x_1	x_2	x_3	s_1	s_2	s_3	$_{ m rhs}$		
1	0	5	0	0	10	10	280	=	z
0	0	-2	0	1	2	-8	-4	=	s_1
0	0	-2	1	0	2	-4	8	=	x_3
0	1	1.25	0	0	5	1.5	2	=	x_1

We use the Dual Simplex method: s_1 leaves, the ratios are 5/2 for x_2 and 10/8 for s_3 , so s_3 enters. The next tableau is

z	x_1	x_2	x_3	s_1	s_2	s_3	rhs		
1	0	2.5	0	1.25	12.5	0	275	=	z
0	0	.25	0	125	25 1 125	1	0.5	=	s_3
0	0	-1	1	5	1	0	10	=	x_3
0	1	.875	0	.1875	125	0	1.25	=	x_1

This is optimal: $x_1 = 1.25$, $x_2 = 0$, $x_3 = 10$, z = 275.

Note that $x_2 = -1$ is not a problem because x_2 is unrestricted in sign (URS). Plugging the $\mathbf{E.1.}$ given solution in to the constraints, we get $s_1 = 2$, $s_2 = 0$, $s_3 = 0$ so this is feasible for the primal. By Complementary Slackness we must have $\eta_1 = \eta_2 = \eta_4 = y_1 = 0$. Note also that y_3 is URS since the third constraint is an inequality. The equations of the dual now say

$$3y_2 = 6$$

$$y_2 + y_3 = 1$$

$$-y_2 + y_3 - \eta_3 = -1$$

$$y_3 = -1$$

The first equation says $y_2 = 2$, the fourth says $y_3 = -1$, the second is satsified, but the third (with $y_2 = 2$ and $y_3 = -1$) says $\eta_3 = -2$. This is not feasible (x_3 is an ordinary " ≥ 0 " variable, and thus so is η_3). So the solution is not optimal.

- **E.2(a).** Using the proposed solution of the primal, we get $s_1 = b_1 6 4a_{13}$ (which must be 0 since this constraint is an equality) and $s_2 = 2$. Using the proposed solution of the dual, we get $\eta_1 = -1 c_1$, $\eta_2 = -a_{12} 2$, $\eta_3 = -a_{13} 1$. By complementary slackness, η_1 and η_3 must be 0, while η_2 can be anything ≥ 0 ; y_1 is allowed to be negative since the first constraint is an equality, and y_2 must be 0 (which it is). Thus $c_1 = -1$, $a_{13} = -1$, $a_{12} \leq 2$, and $b_1 = 6 + 4a_{13} = 2$.
- (b). Any student using the Simplex Method will find an optimal solution which is basic. Since P has two constraints, a basic solution of P has only two basic variables, and thus at most two variables can be nonzero. But the Professor's solution has three nonzero variables: x_1 , x_3 and s_2 . Thus P does not have a unique optimal solution, and since the Professor's solution for P is not a basic solution no student will obtain it. They will obtain his solution for the dual P: by complementary slackness, any optimal solution of P must have P0 must have P1 and P2 by P3 and P4 and P5 by P5.
- **E.3.** If $y_2 = 3$ in an optimal solution of the dual, complementary slackness says any optimal solution of the primal must have $s_2 = 0$, i.e. $9x_1 6x_2 = 6$, or $x_1 = (2/3)(x_2 + 1)$. Substituting this in, the first equation of the primal then says $4 + x_3 + s_1 = 4$, or $x_3 + s_1 = 0$. Since $x_3 \ge 0$ and $s_1 \ge 0$, the only way this can happen is $x_3 = s_1 = 0$. And then the third equation of the primal says $-2 + s_3 = -1$, or $s_3 = 1$.

Now by complementary slackness we must have $y_3=0$, and (since x_1 and x_2 are URS) $\eta_1=\eta_2=0$. The equations of the dual then say

$$6y_1 + 27 + 0 = c_1$$
$$-4y_1 - 18 + 0 = -34$$
$$3y_1 - \eta_3 = c_3$$

From the second equation, $y_1 = (-34 + 18)/(-4) = 4$. Then the first and third say $c_1 = 51$ and $c_3 = 12 - \eta_3$. The optimal objective value can be calculated as $4y_1 + 6y_2 - y_3 = 34$. The only thing we can't determine about the problem is c_3 : all we can say there is $c_3 \le 12$ since $\eta_3 \ge 0$.