
Math 340: Answers to Assignment 7

6.8.2(a). The optimal tableau for Sugarco is in Table 11 on p. 288. The shadow prices for the
constraints are the entries in the objective row for the slack variables s1 and s2: y1 = 4, y2 = 1.

(b). With B−1 =

(

3/2 −1/2
−1/2 1/2

)

, adding 10 to b1 adds

(

15
−5

)

to β, making the basic solution

x3 = 40, x2 = 20. This is still feasible, so the optimal basis doesn’t change. The increase in z is
10y1 = 40, so the profit becomes 340 /c.
(c). This time we’re decreasing b1 by 10; again the basic solution is feasible, and the optimal
basis doesn’t change. The decrease in z is 40, so the profit becomes 260 /c.

(d). This time we decrease b1 by 20, adding

(

−30
10

)

to β and making the basic solution x3 = −5,

x2 = 35. The z value in the basic solution is 300 − 20y1 = 220. The basic solution is not feasible,
so we do a Dual Simplex pivot. From the tableau

z x1 x2 x3 s1 s2 rhs

1 3 0 0 4 1 220 = z

0 1/2 0 1 3/2 −1/2 −5 = x3

0 1/2 1 0 −1/2 1/2 35 = x2

x3 leaves, and s2 enters (with the only negative entry in the x3 row). The next tableau is

z x1 x2 x3 s1 s2 rhs

1 4 0 2 7 0 210 = z

0 −1 0 −2 −3 1 10 = s2

0 1 1 1 1 0 30 = x2

which is optimal. The profit in the optimal solution is 210 /c.

6.8.7(a). In problem 6.3.8(b) (assignment 5) we found that the current basis would be optimal if
the required HIW exposure is between 4 million and 84 million. In this case with (in my version of

the problem) b =

(

−40
−24

)

and yT = (5, 7.5), my z value is yT b = −380, i.e. the cost is $380,000.

(b). With b =

(

−28
−20

)

, β =

(

−.15 .025
.025 −.0875

)(

−28
−20

)

=

(

3.7
1.05

)

which is feasible and thus

optimal. The increase of 4 in b2 increases my version of the objective by 7.5 × 4 = 30 to −290, i.e.
the cost is $290,000.

6.8.9. In the Dakota problem (page 276), the allowable increase for b2 (the finishing hours) is 4

and the allowable increase for b3 (the carpentry hours) is 2. In the 100% rule,
∑

rj = 2/4+1/2 = 1,

so the basis will still be optimal (or of course you could just calculate B−1b =





20
8

2.5



). The shadow

prices being 0, 10 and 10, the increase in z is 10 × 2 + 10 × 1 = 30, so the new optimal z value is
310.

6.11.1. The initial tableau (after putting the constraints into ≤ form) is

z x1 x2 x3 s1 s2 rhs

1 2 0 1 0 0 0 = z

0 −1 −1 1 1 0 −5 = s1

0 −1 2 −4 0 1 −8 = s2



This is suitable for the Dual Simplex method since the initial basic solution is feasible for the
dual but not the primal. s2 leaves, ratios are 2/1 for x1 and 1/4 for x3, so x3 enters.

z x1 x2 x3 s1 s2 rhs

1 7/4 1/2 0 0 1/4 −2 = z

0 −5/4 −1/2 0 1 1/4 −7 = s1

0 1/4 −1/2 1 0 −1/4 2 = x3

Now s1 leaves, ratios are 7/5 for x1 and 1/1 for x2, so x2 enters.

z x1 x2 x3 s1 s2 rhs

1 1/2 0 0 1 1/2 −9 = z

0 5/2 1 0 −2 −1/2 14 = x2

0 3/2 0 1 −1 −1/2 9 = x3

This is optimal: x1 = 0, x2 = 14, x3 = 9, z = −9.

6.11.3. With the new b1 = 20 instead of 48, β = B−1b =





−4
8
2



, and the z value is yT b = 280.

Thus the initial tableau is

z x1 x2 x3 s1 s2 s3 rhs

1 0 5 0 0 10 10 280 = z

0 0 −2 0 1 2 −8 −4 = s1

0 0 −2 1 0 2 −4 8 = x3

0 1 1.25 0 0 −.5 1.5 2 = x1

We use the Dual Simplex method: s1 leaves, the ratios are 5/2 for x2 and 10/8 for s3, so s3

enters. The next tableau is

z x1 x2 x3 s1 s2 s3 rhs

1 0 2.5 0 1.25 12.5 0 275 = z

0 0 .25 0 −.125 −.25 1 0.5 = s3

0 0 −1 1 −.5 1 0 10 = x3

0 1 .875 0 .1875 −.125 0 1.25 = x1

This is optimal: x1 = 1.25, x2 = 0, x3 = 10, z = 275.

E.1. Note that x2 = −1 is not a problem because x2 is unrestricted in sign (URS). Plugging the
given solution in to the constraints, we get s1 = 2, s2 = 0, s3 = 0 so this is feasible for the primal.
By Complementary Slackness we must have η1 = η2 = η4 = y1 = 0. Note also that y3 is URS since
the third constraint is an inequality. The equations of the dual now say

3y2 = 6

y2 + y3 = 1

−y2 + y3 − η3 = −1

y3 = −1

The first equation says y2 = 2, the fourth says y3 = −1, the second is satsified, but the third (with
y2 = 2 and y3 = −1) says η3 = −2. This is not feasible (x3 is an ordinary “≥ 0” variable, and thus
so is η3). So the solution is not optimal.



E.2(a). Using the proposed solution of the primal, we get s1 = b1 − 6 − 4a13 (which must be 0
since this constraint is an equality) and s2 = 2. Using the proposed solution of the dual, we get
η1 = −1 − c1, η2 = −a12 − 2, η3 = −a13 − 1. By complementary slackness, η1 and η3 must be 0,
while η2 can be anything ≥ 0; y1 is allowed to be negative since the first constraint is an equality,
and y2 must be 0 (which it is). Thus c1 = −1, a13 = −1, a12 ≤ 2, and b1 = 6 + 4a13 = 2.
(b). Any student using the Simplex Method will find an optimal solution which is basic. Since
P has two constraints, a basic solution of P has only two basic variables, and thus at most two
variables can be nonzero. But the Professor’s solution has three nonzero variables: x1, x3 and
s2. Thus P does not have a unique optimal solution, and since the Professor’s solution for P is
not a basic solution no student will obtain it. They will obtain his solution for the dual D: by
complementary slackness, any optimal solution of D must have η1 = η3 = y2 = 0, and y1 = c1 = −1.

E.3. If y2 = 3 in an optimal solution of the dual, complementary slackness says any optimal
solution of the primal must have s2 = 0, i.e. 9x1 − 6x2 = 6, or x1 = (2/3)(x2 + 1). Substituting
this in, the first equation of the primal then says 4 + x3 + s1 = 4, or x3 + s1 = 0. Since x3 ≥ 0 and
s1 ≥ 0, the only way this can happen is x3 = s1 = 0. And then the third equation of the primal
says −2 + s3 = −1, or s3 = 1.

Now by complementary slackness we must have y3 = 0, and (since x1 and x2 are URS)
η1 = η2 = 0. The equations of the dual then say

6y1 + 27 + 0 = c1

−4y1 − 18 + 0 = −34

3y1 − η3 = c3

From the second equation, y1 = (−34 + 18)/(−4) = 4. Then the first and third say c1 = 51
and c3 = 12 − η3. The optimal objective value can be calculated as 4y1 + 6y2 − y3 = 34. The only
thing we can’t determine about the problem is c3: all we can say there is c3 ≤ 12 since η3 ≥ 0.


