Assignment 7

Due Monday, Nov. 6
6.8.2, 6.8.7, 6.8.9, 6.11.1, 6.11.3
E.1. Use Complementary Slackness to check whether $x_{1}=3, x_{2}=-1, x_{3}=0, x_{4}=2$ is an optimal solution of the problem
maximize $z=6 x_{1}+x_{2}-x_{3}-x_{4}$
subject to $\quad x_{1}+2 x_{2}+x_{3}+x_{4} \leq 5$
$3 x_{1}+x_{2}-x_{3} \leq 8$
$x_{2}+x_{3}+x_{4}=1$
x_{1} and $x_{2} \mathrm{URS}, x_{3}$ and $x_{4} \geq 0$
E.2(a). Professor Bumble wants to assign his class a linear programming problem P of the form
maximize $z=c_{1} x_{1}+2 x_{2}+x_{3}$
subject to $\quad x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$
$x_{1} \quad-x_{3} \leq 4$
$x_{1}, x_{2}, x_{3} \geq 0$
He wants $x_{1}=6, x_{2}=0, x_{3}=4$ to be an optimal solution of P, and $y_{1}=-1, y_{2}=0$ to be an optimal solution of the dual D. What should the constants c_{1}, a_{12}, a_{13} and b_{1} be?

Hint: Use Complementary Slackness.
(b). After following your advice, the Professor is horrified to find that nobody in the class got the answer he wanted. What went wrong?

Hint: Is the Professor's solution a basic solution?
E.3. 3000 years from now, an archaeologist discovers a sheet of paper in the ruins of the Math Annex. On it is a linear programming problem, but part of it is illegible:
maximize $z=$ (smudge) $-34 x_{2}+$ (smudge)
subject to $\quad 6 x_{1}-4 x_{2}+3 x_{3} \quad \leq 4$
$9 x_{1}-6 x_{2} \leq 6$
$-3 x_{1}+2 x_{2}+7 x_{3} \leq-1$
x_{1}, x_{2} URS, $x_{3} \geq 0$
The only other thing that can be read is a note that the dual problem has an optimal solution with $y_{2}=3$.

What is the optimal value of the objective? What else can you determine about the problem?

Hint: Use Complementary Slackness, and the equations of both the primal and dual problems.

