Math 340: Answers to Assignment 6

6.5.3. We write the third constraint as $-2 x_{2}-x_{3} \leq-6$. Since x_{2} and x_{3} are URS, the second and third constraints of the dual are equalities. Since the fourth constraint is an equality, y_{4} is URS. Thus the dual is

$$
\begin{array}{ccc}
\min & 5 y_{1}+7 y_{2}-6 y_{3}+4 y_{4} \\
\text { s.t. } & y_{1}+2 y_{2}+y_{4} & \geq 4 \\
& y_{1}+y_{2}-2 y_{3} & =-1 \\
& -y_{3}+y_{4}=2 \\
& y_{1}, y_{2}, y_{3} \geq 0, y_{4} U R S
\end{array}
$$

6.7.1(a). The dual is

$$
\begin{array}{lrr}
\text { min } & 100 y_{1}+80 y_{2}+40 y_{3} & \\
\text { s.t. } & 2 y_{1}+y_{2} & +y_{3} \geq 3 \\
& y_{1}+y_{2} & \geq 2 \\
& y_{1}, y_{2}, y_{3} \geq 0 &
\end{array}
$$

(b). The z row of the optimal tableau from Table 12 on p. 289 has 1 under s_{1} and s_{2} and 0 under s_{3}, so the optimal solution of the dual is $y_{1}=1, y_{2}=1, y_{3}=0$.
(c). Plugging in $y_{1}=1, y_{2}=1, y_{3}=0$ in the constraints of the dual we get $2+1+0 \geq 3$, $1+1+0 \geq 2$, so this is a feasible solution of the dual problem (with slack variables $\eta_{1}=\eta_{2}=0$). The objective value is $100+80+0=180$, which is the value of z in the optimal solution of the primal $x_{1}=20, x_{2}=60, x_{3}=20$ from that tableau.
6.7.3. We have $y_{1}=0.4$ and $y_{2}=1.4$, so the optimal z value is $\mathbf{y}^{T} \mathbf{b}=0.5 y_{1}+0.5 y_{2}=0.9$.
6.7.5. If that tableau is correct, the dual problem has an optimal solution where $\eta_{1}=0, \eta_{2}=2$, $y_{1}=0, y_{2}=1$, and $z=20 / 3$. Now the objective of the dual is $6 y_{1}+10 y_{2}$, which would be 10 , not $20 / 3$, so something is wrong. You might also notice that the first equation of the dual is $3 y_{1}+6 y_{2}-\eta_{1}=4$; plugging in the above values gives $0+6-0=4$, which is also wrong.
E.1. If the first constraint is $x_{1}-x_{2} \leq 0$, one way to make it really obvious that the primal problem is infeasible would be to take the second constraint as $x_{1}-x_{2} \geq 1$, i.e. $-x_{1}+x_{2} \leq-1$. Then the constraints of the dual would be $y_{1}-y_{2} \geq c_{1}$ and $-y_{1}+y_{2} \geq c_{2}$. Since the latter is equivalent to $y_{1}-y_{2} \leq-c_{2}$, the dual problem will also be infeasible if $-c_{2}<c_{1}$. So e.g. with $c_{1}=1$ and $c_{2}=1$, the primal problem is

$$
\begin{array}{ll}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}-x_{2} \leq 0 \\
& -x_{1}+x_{2} \leq-1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

There are many other correct answers to this problem.

