
Math 340: Answers to Assignment 5

6.3.3. The Dakota problem has B−1 =





1 2 −8
0 2 −4
0 −0.5 1.5



 so with the new b =





b1

20
8



 we have

β = B−1b =





b1 − 24
8
2



. This is optimal as long as it is feasible, i.e. for b1 ≥ 24. For b1 = 30,

β =





6
8
2



, i.e. s1 = 6, x3 = 8, x1 = 2.

6.3.6(a). In the optimal solution of the original problem, x1 is nonbasic, with reduced cost 3.
This means that each Type I candy bar made reduces z by 3 cents. The current basis remains
optimal if the profit c1 for Type I candy bars increases by no more than 3 cents, i.e. if c1 ≤ 6. If
the profit were 7 cents, the tableau would be

z x1 x2 x3 s1 s2 rhs

1 −1 0 0 4 1 300 = z

0 1/2 0 1 3/2 −1/2 25 = x3

0 1/2 1 0 −1/2 1/2 25 = x2

x1 enters; there is a tie for leaving variable, so I’ll choose x3 (the higher row in the tableau)
to leave. The next tableau is

z x1 x2 x3 s1 s2 rhs

1 0 0 2 7 0 350 = z

0 1 0 2 3 −1 50 = x1

0 0 1 −1 −2 1 0 = x2

This is optimal. The new optimal solution has x1 = 50, x2 = x3 = s1 = s2 = 0, z = 350.

(b). With cT

BV = [5, c2] have yT = cT

BV B−1 = [15/2 − c2/2,−5/2 + c2/2] and η1 = yT A1 − 3 =
−1/2 + c2/2. The current solution is optimal if all these are nonnegative, i.e. 5 ≤ c2 ≤ 15. At a
profit of 13 cents, the current solution would still be optimal, with the same values x2 = x3 = 25,
and z = 13 × 25 + 5 × 25 = 450 cents.

(c). With b1 changed from 50 to t, β = B−1

(

t
100

)

=

(

3t/2 − 50
50 − t/2

)

. Thus the current basis

remains feasible (and therefore optimal) if 100/3 ≤ t ≤ 100.

(d). Within the above interval, the shadow price of the sugar constraint is 4 cent per oz. The

additional 10 oz of sugar raises the profit by 40 cents, to 340 cents. We have β =

(

40
20

)

, i.e.

they should produce 20 type 1 and 40 type 2 candy bars. If only 30 oz of sugar were available,
this would be outside the interval where the current basis is feasible, and the questions can’t be
answered (except by solving the new problem from scratch or using the Dual Simplex Method,
which we didn’t have yet).

(e). The reduced cost of the new type 1 bar would be .5 × 4 + .5 × 1− 3 = −.5 < 0, so it would
become profitable to produce these.

(f). The reduced cost of the type 4 bar would be 3 × 4 + 4 × 1 − 17 = −1 < 0, so it would be
profitable to produce these.



6.3.8(a). In my version of the problem with cT

BV = [c1,−100] we have yT = [−5/2 −

3/20c1, 35/4 + 1/40c1]. The current basis is optimal if −350 ≤ c1 ≤ −50/3, i.e. if the cost of
a comedy ad is between $16,666.67 and $350,000.

(b). With b1 changed from −28 to −t, we have β = B−1b =

(

(3t − 12)/20
(84 − t)/40

)

. The current

basis is optimal as long as 4 ≤ t ≤ 84, i.e. the required HIW exposures are from 4 million to 84
million. A requirement of 40 million (i.e. t = 40) is in this interval, so the optimal solution would
be x1 = 5.4, x2 = 1.1.

(c). Pricing it out: yT Anews− cnews = [5, 7.5]

(

−12
−7

)

− (−110) = −2.5 < 0. Therefore Dorian

should advertise on the news program.

6.3.9. The new b is the old b+ ∆e where e is the vector with ei = 1 and all other entries 0. So
the new β is the old β + ∆B−1e, and B−1e is column number i of B−1.

6.4.7. In the Dakota problem the desks and chairs are basic, so we use the 100% rule. The “OBJ
COEFFICIENT RANGES” in the LINDO output on p. 282 shows that a price of $65 for desks, a
$5 increase, is 25% of the allowable increase; $25 for tables, a $5 decrease, is 0% of the allowable
decrease; $18 for chairs, a $2 decrease, is 40% of the allowable decrease. The total is 65% < 100%.
Therefore the current basis would remain optimal. The new z value would be 65×2+18×8 = $274.

6.4.13. Note that

r1[U1, b2] + r2[b1, L2] + (1 − r1 − r2)[b1, b2] = [r1(U1 − b1) + b1, r2(L2 − b2) + b2]

= [b1 + ∆b1, b2 + ∆b2] = [b′
1
, b′

2
]

Now B−1

(

b′
1

b′
2

)

= r1B
−1

(

U1

b2

)

+ r2B
−1

(

b1

L2

)

+ (1 − r1 − r2)B
−1

(

b1

b2

)

.

Note that B−1

(

U1

b2

)

≥ 0 because the current basis is still optimal if b1 is changed to U1

with b2 unchanged. Similarly, B−1

(

b1

L2

)

≥ 0, while B−1

(

b1

b2

)

≥ 0 because the current basis

is optimal with b1 and b2 unchanged. Thus if r1 + r2 ≤ 1, B−1

(

b′
1

b′
2

)

is a linear combination of

nonnegative vectors with nonnegative coefficients, and therefore is nonnegative.

E.1(a). We have b =





15
18
4



 so β = B−1b =





2
1
1



, i.e. the optimal solution is x1 = 2, x2 = 1,

x3 = x4 = 0. We have cT

BV
= [−1, 0, 4] so the vector of dual prices is yT = cT

BV
B−1 = [0,−1/3, 2]

(the fact that y2 < 0 is no problem because the second constraint is an equality). The vector of
reduced costs is ηT = yT A − cT = [0, 0, 2, 7].

(b). The reduced cost of x5 would be η5 = yT





1
3
p



 − 3 = 2p − 4, so the solution is optimal

if p ≥ 2. With p = 2, the current solution is still optimal but is not the only optimal solution:

x5 could enter the basis. The x5 column of the tableau would be B−1





1
3
2



 =





−1
0

1/2



. Thus

x1 = 2 + x5, s1 = 1 and x2 = 1 − x5/2. The other optimal basic solution (when x5 = 2) is x1 = 4,
x2 = x3 = x4 = 0, x5 = 2.


