Math 340: Answers to Assignment 4

6.1.3. Note that "the weekly demand for soldiers is at least 20 " means that the demand constraint in the Giapetto problem is $x_{1} \leq K$ where $K \geq 20$. It doesn't mean that the constraint is $x_{1} \geq 20$. Also, Figure 1 on Page 263 should look like this:

Figure 1
If $K \geq 20$, point B , which is the intersection of the lines for the finishing and carpentry constraints, is still in the feasible region. The isoprofit line through B intersects the feasible region only at B , and no isoprofit line for higher profit can intersect the feasible region. Therefore the optimal solution remains the same.
6.1.5. Note that Table 1 has a misprint: Radio 2 should require 1 hour of Laborer 2, not 2 . Thus the second constraint (for Laborer 2) is $2 x_{1}+x_{2} \leq 50$, and Radio 2's contribution to the profit is $22-2 \times 5-1 \times 6-4=2$ dollars. The feasible region is shown below. The dotted line is the isoprofit line for $z=80$, which goes through the optimal solution $x_{1}=20, x_{2}=10$.
(a). The basis in question is x_{1}, x_{2}, since these are the variables that have nonzero values in the optimal solution. The given solution is optimal as long as the slope of the isoprofit line is between $-1 / 2$ (the slope of the line $x_{1}+2 x_{2}=40$) and -2 (the slope of the line $2 x_{1}+x_{2}=50$) inclusive. If the coefficient c_{1} of x_{1} in the objective changes, while c_{2} stays at 2 , the slope of the isoprofit line is $-c_{1} / 2$, so you need $-2 \leq-c_{1} / 2 \leq-1 / 2$, i.e. $1 \leq c_{1} \leq 4$. Now if the price of the Type 1 radio is $p_{1}, c_{1}=p_{1}-22$. So the answer is that the price could be from $\$ 23$ to $\$ 26$.
(b). If c_{2} changes while c_{1} stays at 3 , the slope of the isoprofit line is $-3 / c_{2}$, so you need $-2 \leq-3 / c_{2} \leq-1 / 2$, i.e. $3 / 2 \leq c_{2} \leq 6$. If the price of the Type 2 radio is $p_{2}, c_{2}=p_{2}-20$. Thus the price could be from $\$ 21.50$ to $\$ 26$.
(c). If the right side of the first constraint was changed from 40 to 30 , the lines $x_{1}+2 x_{2}=30$ and $2 x_{1}+x_{2}=50$ would still intersect in the first quadrant, and because the slopes would still be the same this point would still be the optimal solution: $x_{1}=70 / 3, x_{2}=10 / 3$, with $z=230 / 3$.

Feasible region for 6.1.5
(d). If the right side of the second constraint was changed from 50 to 60 , the lines would again intersect in the first quadrant, again giving the optimal solution: $x_{1}=80 / 3, x_{2}=20 / 3$, with $z=280 / 3$.
(e). In (c), a decrease of 10 in b_{1} caused a decrease of $10 / 3$ in z, keeping the same basis, so the shadow price for the first constraint is $1 / 3$. In (d), an increase of 10 in b_{2} caused an increase of $40 / 3$ in z, keeping the same basis, so the shadow price for the second constraint is $4 / 3$.
6.2.2. We have $B=\left(\begin{array}{cc}x_{2} & s_{1} \\ 1 & 1 \\ 1 & 0\end{array}\right)$ so $B^{-1}=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$.
$B^{-1} N=\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$. These columns go in the main part of the tableau under x_{1} and s_{2}.
$\mathbf{b}=\binom{4}{2}$ so $\boldsymbol{\beta}=B^{-1} \mathbf{b}=\binom{2}{2}$ which goes in the main part of the rhs column.
$\mathbf{c}_{B V}^{T}=\left(\begin{array}{cc}x_{2} & s_{1} \\ 1 & 0\end{array}\right)$ and $\mathbf{c}_{N B V}^{T}=\left(\begin{array}{cc}x_{1} & s_{2} \\ -1 & 0\end{array}\right)$ so so $\mathbf{y}^{T}=\mathbf{c}_{B V}^{T} B^{-1}=\left(\begin{array}{ll}0 & 1\end{array}\right)$ and $\boldsymbol{\eta}_{N B V}^{T}=$ $\begin{array}{ll}x_{1} & s_{2}\end{array}$
$\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{ll}2 & 1\end{array}\right)$ which goes in the objective row under x_{1} and s_{2}.
$z^{*}=\mathbf{c}_{B V}^{T} \boldsymbol{\beta}=2$ which goes in the rhs column of the objective row.
Thus the tableau is

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs		
1	2	0	0	1	2	$=$	z
0	1	1	0	1	2	$=$	x_{2}
0	1	0	1	-1	2	$=$	s_{1}

6.3.1. The Dakota problem has $B^{-1}=\left(\begin{array}{ccc}1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5\end{array}\right)$ with basic variables s_{1}, x_{3}, x_{1} (see pages 268 and 270 in the text). We are to take $\left.\mathbf{c}^{T}=\begin{array}{rccccc}x_{1} & x_{2} & x_{3} & s_{1} & s_{2} & s_{3} \\ 60 & 30 & c_{3} & 0 & 0 & 0\end{array}\right)$, so

$$
\mathbf{c}_{B V}^{T}=\begin{array}{ccc}
s_{1} & x_{3} & x_{1} \\
\left(\begin{array}{ccc}
0 & c_{3} & 60
\end{array}\right) . \\
& x_{2} & \text { Then } \mathbf{y}^{T}
\end{array}=\underset{s_{3}}{\mathbf{c}_{B V}^{T} B^{-1}}=\left(\begin{array}{lll}
0 & -30+2 c_{3} & 90-4 c_{3}
\end{array}\right) \text { and } \boldsymbol{\eta}_{N B V}^{T}=
$$

$\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{lll}45-2 c_{3} & -30+2 c_{3} & 90-4 c_{3}\end{array}\right)$. For the current solution to remain optimal, all these entries must be ≥ 0 : $45-2 c_{3} \geq 0$ so $c_{3} \leq 45 / 2=22.5,-30+2 c_{3} \geq 0$ so $c_{3} \geq 15$, $90-4 c_{3} \geq 0$ so $c_{3} \leq 90 / 4=22.5$. Thus $15 \leq c_{3} \leq 22.5$.

If $c_{3}=21$, that is in the interval where the current solution is optimal, so the optimal solution remains $s_{1}=24, x_{3}=8, x_{1}=2, x_{2}=s_{2}=s_{3}=0$, with $z=z^{*}=\mathbf{c}_{B V}^{T} \boldsymbol{\beta}=288$.

On the other hand, $c_{3}=25$ is outside the interval. We have $\boldsymbol{\eta}_{N B V}^{T}=\left(\begin{array}{ccc}x_{2} & s_{2} & s_{3} \\ -5 & 20 & -10\end{array}\right)$ and $z^{*}=320$, so the tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	-5	0	0	20	-10	320	$=$	z
0	0	-2	0	1	2	-8	24	$=$	s_{1}
0	0	-2	1	0	2	-4	8	$=$	x_{3}
0	1	$5 / 4$	0	0	$-1 / 2$	$3 / 2$	2	$=$	x_{1}

Thus s_{3}, with the most negative entry in the z row, would enter the basis, and x_{1} would leave. The next tableau would be

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	$20 / 3$	$10 / 3$	0	0	$50 / 3$	0	$1000 / 3$	$=$	z
0	$16 / 3$	$14 / 3$	0	1	$-2 / 3$	0	$104 / 3$	$=$	s_{1}
0	$8 / 3$	$4 / 3$	1	0	$2 / 3$	0	$40 / 3$	$=$	x_{3}
0	$2 / 3$	$5 / 6$	0	0	$-1 / 3$	1	$4 / 3$	$=$	s_{3}

which is optimal: $x_{1}=x_{2}=s_{2}=0, x_{3}=40 / 3, s_{1}=104 / 3, s_{3}=4 / 3, z=1000 / 3$.
6.3.2. If $c_{1}=55$ (with $c_{2}=30$ and $c_{3}=20$ as in the original problem), we have $\mathbf{y}^{T}=\mathbf{c}_{B V}^{T} B^{-1}=$ $\left(\begin{array}{lll}0 & 25 / 2 & 5 / 2\end{array}\right)$ and $\boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{ccc}x_{2} & s_{2} & s_{3} \\ -5 / 4 & 25 / 2 & 5 / 2\end{array}\right)$. Thus we will want x_{2} to enter the basis. Since $z^{*}=\mathbf{c}_{B V}^{T} \boldsymbol{\beta}=270$, the tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	$-5 / 4$	0	0	$25 / 2$	$5 / 2$	270	$=$	z
0	0	-2	0	1	2	-8	24	$=$	s_{1}
0	0	-2	1	0	2	-4	8	$=$	x_{3}
0	1	$5 / 4$	0	0	$-1 / 2$	$3 / 2$	2	$=$	x_{1}

x_{2} enters the basis and x_{1} leaves the basis. The next tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	1	0	0	0	12	4	272	$=$	z
0	$8 / 5$	0	0	1	$6 / 5$	$-28 / 5$	$136 / 5$	$=$	s_{1}
0	$8 / 5$	0	1	0	$6 / 5$	$-8 / 5$	$56 / 5$	$=$	x_{3}
0	$4 / 5$	1	0	0	$-2 / 5$	$6 / 5$	$8 / 5$	$=$	x_{2}

which is optimal and has x_{1} nonbasic, i.e. no desks are produced.
E.1. $\quad B^{-1} N=\left(\begin{array}{ccc}x_{1} & x_{2} & s_{3} \\ 0 & 1 / 2 & 1 / 2 \\ 2 & -3 / 2 & -1 / 2 \\ 1 & 1 / 2 & -1 / 2\end{array}\right)$ which goes in the main part of the tableau under x_{1}, x_{2}, s_{3}.

$$
\begin{aligned}
& \boldsymbol{\beta}=B^{-1} \mathbf{b}=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right), \text { which goes in the main part of the rhs column. } \\
& \mathbf{y}^{T}=\mathbf{c}_{B V}^{T} B^{-1}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right), \boldsymbol{\eta}_{N B V}^{T}=\mathbf{y}^{T} N-\mathbf{c}_{N B V}^{T}=\left(\begin{array}{ccc}
x_{1} & x_{2} & s_{3} \\
1 & 0 & 1
\end{array}\right), \text { and } z^{*}=\mathbf{c}_{B V}^{T} \boldsymbol{\beta}=8 .
\end{aligned}
$$

Thus the tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs							
1	1	0	0	0	0	1	8	$=$	z					
0	0	$1 / 2$	1	0	0	$1 / 2$	4	$=$	x_{3}					
0	2	$-3 / 2$	0	1	0	$-1 / 2$	0	$=$	s_{1}					
0	1	$1 / 2$	0	0	1	$-1 / 2$	2	$=$	s_{2}					

E.2. The restriction of 20000 barrels of Crude 1 was the constraint I called cr1bd. In LINDO's solution, the "dual price" for this is given as 0.745904 . This means that for small increases in the right side of the constraint, the profit increases by $\$ 0.745904$ per barrel, and thus the refinery should be willing to pay up to this much more than the regular price ($\$ 24$ per barrel), i.e. up to $\$ 24.745904$ per barrel, for small additional amounts of Crude 1.

