Assignment 4

Due Monday, Oct. 16
6.1.3, 6.1.5, 6.2.2, 6.3.1, 6.3.2
E.1. Consider the problem
maximize $z=-x_{1}+x_{2}+2 x_{3}$
subject to $\quad 2 x_{1}-x_{2}+x_{3} \leq 4$
$x_{1}+x_{2}+x_{3} \leq 6$
$x_{2}+2 x_{3} \leq 8$
$x_{1}, x_{2}, x_{3} \geq 0$
Given that the optimal basis is x_{3}, s_{1}, s_{2} and

$$
B^{-1}=\left(\begin{array}{ccc}
0 & 0 & 1 / 2 \\
1 & 0 & -1 / 2 \\
0 & 1 & -1 / 2
\end{array}\right)
$$

construct the optimal tableau. Use the formulas from Section 6.2, not pivoting.
E.2. My solution of the Oil Refinery Problem from Assignment 1 used 20000 barrels of Crude 1, all that was available. If some more Crude 1 became available, what price should the refinery be willing to pay for it? Use only the Lindo results in the online solution (don't solve the problem yourself).

