Math 340: Solutions to Assignment 3

4.12.3. Note that we change the first constraint to $-x_1 - x_2 \leq -3$. We introduce slack variables s_1 and s_2 for the first two constraints, artificial variable a_3 for the third, and subtract the artificial variable a_0 from the first constraint where there is a negative rhs entry. The temporary objective w is $-a_0 - a_3$, and the initial tableau is

 w	z	x_1	x_2	s_1	s_2	a_3	a_0	$^{\mathrm{rhs}}$			
1	0	0	0	0	0	1	1	0	=	w	
0	1	-3	-1	0	0	0	0	0	=	z	
0	0	-1	-1	1	0	0	-1	-3	=	s_1	
0	0	2	1	0	1	0	0	4	=	s_2	
0	0	1	1	0	0	1	0	3	=	a_3	

Adjust the tableau so a_3 is basic, subtracting the a_3 row from the w row.

w	z	x_1	x_2	s_1	s_2	a_3	a_0	rhs		
1	0	-1	-1	0	0	0	1	-3	=	w
0	1	-3	-1	0	0	0	0	0	=	z
0	0	-1	-1	1	0	0	-1	-3	=	s_1
0	0	2	1	0	1	0	0	4	=	s_2
0	0	1	1	0	0	1	0	3	=	a_3

 a_0 enters the basis and s_1 leaves, producing a tableau with a basic feasible solution (for the relaxed problem).

w	z	x_1	x_2	s_1	s_2	a_3	a_0	rhs		
1	0	-2	-2	1	0	0	0	-6	=	w
0	1	-3	-1	0	0	0	0	0	=	z
0	0	1	1	-1	0	0	1	3	=	a_0
0	0	2	1	0	1	0	0	4	=	s_2
0	0	1	1	0	0	1	0	3	=	a_3

Now ordinary pivots begin. x_1 enters (in a tie for most negative entry in the w row). s_2 leaves, w ith the smallest ratio.

w	z	x_1	x_2	s_1	s_2	a_3	a_0	$^{\mathrm{rhs}}$			
1	0	0	-1	1	1	0	0	-2	=	w	
0	1	0	1/2	0	3/2	0	0	6	=	z	
0	0	0	1/2	-1	-1/2	0	1	1	=	a_0	
0	0	1	1/2	0	1/2	0	0	2	=	x_1	
0	0	0	1/2	0	-1/2	1	0	1	=	a_3	

Now x_2 enters. There's a tie for minimum ratio: a_0 leaves (in the lower-n umbered row).

w	z	x_1	x_2	s_1	s_2	a_3	a_0	rhs	5		
1	0	0	0	-1	0	0	2	0	=	w	
0	1	0	0	1	2	0	-1	5	=	z	
0	0	0	1	-2	-1	0	2	2	=	x_2	
0	0	1	0	1	1	0	-1	1	=	x_1	
0	0	0	0	1	0	1	-1	0	=	a_3	

The basic solution is now feasible for the original problem, although a_3 is still basic (it has the value 0, as it should). We now remove the w row and column, and use z as the objective. We can also remove the a_0 column.

z	x_1	x_2	s_1	s_2	a_3	\mathbf{rhs}	
1	0	0	1	2	0	5 = z	
0	0	1	-2	-1	0	$2 = x_2$	
0	1	0	1	1	0	$1 = x_1$	
0	0	0	1	0	1	$0 = a_3$	

Phase II can now begin, but it stops immediately: this tableau is optimal. The optimal solution is $x_1 = 1$, $x_2 = 2$, $s_1 = s_2 = a_3 = 0$, with z = 5.

4.12.6. This problem is a bit strange since the two constraints are equivalent and the objective is the left side of one of the constraints. Note that to minimize z I maximize -z, which I will call \tilde{z} . The slack variables for the constraints are both artificial. We need a Phase I, with temporary objective $w = -a_1 - a_2$. The initial tableau is

w	\tilde{z}	x_1	x_2	a_1	a_2	rhs
1	0	0	0	1	1	0 = w
0	1	1	1	0	0	$0 = \tilde{z}$
0	0	1	1	1	0	$2 = a_1$
0	0	2	2	0	1	$4 = a_2$

To allow a_1 and a_2 to be basic, we must subtract their rows from the \tilde{z} row:

w	\widetilde{z}	x_1	x_2	a_1	a_2	rhs			
1	0	-3	-3	0	0	-6	=	w	
0	1	1	1	0	0	0	=	\tilde{z}	
0	0	1	1	1	0	2	=	a_1	
0	0	2	2	0	1	4	=	a_2	

 x_1 enters the basis, and a_1 leaves (there are ties for both entering and leaving variable).

w	\tilde{z}	x_1	x_2	a_1	a_2	\mathbf{rhs}			
1	0	0	0	3	0	0	=	w	
0	1	0	0	-1	0	-2	=	\tilde{z}	
0	0	1	1	1	0	2	=	x_1	
0	0	0	0	-2	1	0	=	a_2	

We have successfully completed Phase I, since w = 0 (even though the artificial variable a_2 is still basic, it has the value 0), so we can delete the w row and column. Since a_1 is artificial, it is not allowed to enter the basis even though its entry in the \tilde{z} row is negative, and so this tableau is optimal. The optimal solution we have found is $x_1 = 2$, $x_2 = 0$, $a_1 = a_2 = 0$, z = 2 (it is not the only optimal solution: we could take $x_1 = 2 - x_2$ with $0 \le x_2 \le 2$).

4.14.2. The initial tableau is

z	x_1	x_2^U	s_1	s_2	\mathbf{rhs}	
1	-2	-1	0	0	0 =	
0	3	1	1	0	6 =	s_1
0	1	1	0	1	4 =	s_2

Since x_2 is URS, it has priority to enter the basis. It enters increasing, and s_2 leaves with the minimum ratio.

z	x_1	x_2^U	s_1	s_2	rhs	5		
1	-1	0	0	1	4	=	z	
0	2	0	1	-1	2	=	s_1	
0	1	1	0	1	4	=	x_2^U	

Now x_1 enters and s_1 leaves. Note that no ratio needs to be calculated for x_2 because URS variables never leave the basis.

z	x_1	x_2^U	s_1	s_2	rhs	
1	0	0	1/2	1/2	5 =	z
0	1	0	1/2	-1/2	1 =	x_1
0	0	1	-1/2	3/2	3 =	x_2^U

This is optimal: $x_1 = 1, x_2 = 3, s_1 = s_2 = 0, z = 5.$

E.1. Multiply the third constraint by -1 to make the right side positive. We need the artificial variable a_0 in the first constraint. The temporary objective is $w = -a_2 - a_3 - a_0$. The tableau is

w	z	x_1	x_2	x_3	x_4	s_1	a_2	a_3	a_0	$^{\mathrm{rhs}}$		
1	0	0	0	0	0	0	1	1	1	0	=	w
0	1	7	-4	-10	-12	0	0	0	0	0	=	z
0	0	1	-3	0	-1	1	0	0	-1	-2	=	s_1
0	0	0	1	2	2	0	1	0	0	3	=	a_2
0	0	-1	1	0	1	0	0	1	0	1	=	a_3

To fix the a_3 column, we need to subtract the last two rows from the w row, so the w row becomes

w	z	x_1	x_2	x_3	x_4	s_1	s_2	a_3	a_0	$^{\mathrm{rhs}}$			
1	0	1	-2	-2	-3	0	0	0	1	-4	=	w	

To make the basic solution feasible we need a special pivot where a_0 enters, and s_1 leaves.

w	z	x_1	x_2	x_3	x_4	s_1	a_2	a_3	a_0	\mathbf{rhs}		
1	0	2	-5	-2	-4	1	0	0	0	-6	=	w
0	1	7	-4	-10	-12	0	0	0	0	0	=	z
0	0	-1	3	0	1	-1	0	0	1	2	=	a_0
0	0	0	1	2	2	0	1	0	0	3	=	a_2
0	0	-1	1	0	1	0	0	1	0	1	=	a_3

Now the simplex method can begin. x_2 enters and a_0 leaves, with the smallest ratio 2/3.

w	z	x_1	x_2	x_3	x_4	s_1	a_2	a_3	a_0	\mathbf{rhs}		
1	0	1/3	0	-2	-7/3	-2/3	0	0	5/3	-8/3	=	w
0	1	17/3	0	-10	-32/3	-4/3	0	0	4/3	8/3	=	z
0	0	-1/3	1	0	1/3	-1/3	0	0	1/3	2/3	=	x_2
0	0	1/3	0	2	5/3	1/3	1	0	-1/3	7/3	=	a_2
0	0	-2/3	0	0	2/3	1/3	0	1	-1/3	1/3	=	a_3

Now x_4 enters and a_3 leaves.

w	z	x_1	x_2	x_3	x_4	s_1	a_2	a_3	a_0	\mathbf{rhs}		
1	0	-2	0	-2	0	1/2	0	7/2	1/2	-3/2	=	w
0	1	-5	0	-10	0	4	0	16	-4	8	=	z
0	0	0	1	0	0	-1/2	0	-1/2	1/2	1/2	=	x_2
0	0	2	0	2	0	-1/2	1	-5/2	1/2	3/2	=	a_2
0	0	-1	0	0	1	1/2	0	3/2	-1/2	1/2	=	x_4

Now x_1 enters and a_2 leaves.

w	z	x_1	x_2	x_3	x_4	s_1	a_2	a_3	a_0	rhs		
1	0	0	0	0	0	0	1	1	1	0	=	w
0	1	0	0	-5	0	11/4	5/2	39/4	-11/4	47/4	=	z
0	0	0	1	0	0	-1/2	0	-1/2	1/2	1/2	=	x_2
0	0	1	0	1	0	-1/4	1/2	-5/4	1/4	3/4	=	x_1
0	0	0	0	1	1	1/4	1/2	1/4	-1/4	5/4	=	x_4

Since w = 0, this is feasible for the original problem. We discard the w row and column, and begin Phase II. x_3 enters and x_1 leaves.

z	x_1	x_2	x_3	x_4	s_1	a_2	a_3	a_0	$^{\mathrm{rhs}}$		
1	5	0	0	0	3/2	5	7/2	-3/2	31/2	=	z
0	0	1	0	0	-1/2	0	-1/2	1/2	1/2	=	x_2
0	1	0	1	0	-1/4	1/2	-5/4	1/4	3/4	=	x_3
0	-1	0	0	1	1/2	0	3/2	-1/2	1/2	=	x_4

This is now optimal (note that the artificial variable a_0 can't enter the basis). The optimal solution is $x_1 = 0$, $x_2 = 1/2$, $x_3 = 3/4$, $x_4 = 1/2$, $s_1 = a_2 = a_3 = 0$.

E.2. The initial tableau is

z	x_1	x_2	x_3^U	s_1	s_2	rhs		
1	-4	2	-3	0	0	0	=	z
0	2	1	1	1	0	1	=	s_1
0	1	-1	1	0	1	0	=	s_2

The basic solution is feasible, so we don't need Phase I. The URS variable x_3 has first priority to enter, and enters increasing; s_2 leaves with ratio 0.

z	x_1	x_2	x_3^U	s_1	s_2	rhs	5		
1	-1	-1	0	0	3	0	=	z	
0	1	2	0	1	-1	1	=	s_1	
0	1	-1	1	0	1	0	=	x_3^U	

Now x_1 enters and s_1 leaves (there is no ratio to calculate for x_3 , as we don't care if it becomes negative).

z	x_1	x_2	x_3^U	s_1	s_2	\mathbf{rhs}			_
1	0	1	0	1	2	1	=	z	
0	1	2	0	1	-1	1	=	x_1	
0	0	-3	1	-1	2	-1	=	x_3^U	
	This is	s opti	mal: x	$x_1 = 1$	$x_2 = 0$	$, x_3 =$	-1, .	$s_1 = s_2 =$	= 0, z =

E.3. There are approximately $60 \times 60 \times 24 \times 365.25 = 3.156 \times 10^7$ seconds in a year, so the first computer can do about 3.156×10^{10} pivots in a year. The $n \times n$ Klee-Minty problem requires $2^n - 1$ pivots. Since $2^{34} - 1 < 3.156 \times 10^{10} < 2^{35} - 1$, the largest Klee-Minty problem this computer could do would be 34×34 . The second computer could do about $3.156 \times 10^{10} < 2^{35} - 1$, the largest Klee-Minty problem this computer could do a 44×44 Klee-Minty problem. Typical $m \times n$ problems of this order of magnitude usually require something like $m \ln(n)$ pivots; $34 \ln(34) \approx 120$ pivots would take the first computer about 0.12 seconds, and $44 \ln(44) \approx 167$ pivots would take the second computer about 0.00017 seconds.