Math 340: Solutions to Assignment 3

4.12.3. Note that we change the first constraint to $-x_{1}-x_{2} \leq-3$. We introduce slack variables s_{1} and s_{2} for the first two constraints, artificial variable a_{3} for the third, and subtract the artificial variable a_{0} from the first constraint where there is a negative rhs entry. The temporary objective w is $-a_{0}-a_{3}$, and the initial tableau is

w	z	x_{1}	x_{2}	s_{1}	s_{2}	a_{3}	a_{0}	rhs		
1	0	0	0	0	0	1	1	0	$=$	w
0	1	-3	-1	0	0	0	0	0	$=$	z
0	0	-1	-1	1	0	0	-1	-3	$=$	s_{1}
0	0	2	1	0	1	0	0	4	$=$	s_{2}
0	0	1	1	0	0	1	0	3	$=$	a_{3}

Adjust the tableau so a_{3} is basic, subtracting the a_{3} row from the w row.

w	z	x_{1}	x_{2}	s_{1}	s_{2}	a_{3}	a_{0}	rhs		
1	0	-1	-1	0	0	0	1	-3	$=$	w
0	1	-3	-1	0	0	0	0	0	$=$	z
0	0	-1	-1	1	0	0	-1	-3	$=$	s_{1}
0	0	2	1	0	1	0	0	4	$=$	s_{2}
0	0	1	1	0	0	1	0	3	$=$	a_{3}

a_{0} enters the basis and s_{1} leaves, producing a tableau with a basic feasible solution (for the relaxed problem).

w	z	x_{1}	x_{2}	s_{1}	s_{2}	a_{3}	a_{0}	rhs		
1	0	-2	-2	1	0	0	0	-6	$=$	w
0	1	-3	-1	0	0	0	0	0	$=$	z
0	0	1	1	-1	0	0	1	3	$=$	a_{0}
0	0	2	1	0	1	0	0	4	$=$	s_{2}
0	0	1	1	0	0	1	0	3	$=$	a_{3}

Now ordinary pivots begin. x_{1} enters (in a tie for most negative entry in the w row). s_{2} leaves, w ith the smallest ratio.

w	z	x_{1}	x_{2}	s_{1}	s_{2}	a_{3}	a_{0}	$r\|r l l l\|$		
1	0	0	-1	1	1	0	0	-2	$=$	w
0	1	0	$1 / 2$	0	$3 / 2$	0	0	6	$=$	z
0	0	0	$1 / 2$	-1	$-1 / 2$	0	1	1	$=$	a_{0}
0	0	1	$1 / 2$	0	$1 / 2$	0	0	2	$=$	x_{1}
0	0	0	$1 / 2$	0	$-1 / 2$	1	0	1	$=$	a_{3}

Now x_{2} enters. There's a tie for minimum ratio: a_{0} leaves (in the lower-n umbered row).

w	z	x_{1}	x_{2}	s_{1}	s_{2}	a_{3}	a_{0}	rhs			
1	0	0	0	-1	0	0	2	0	$=$	w	
0	1	0	0	1	2	0	-1	5	$=$	z	
0	0	0	1	-2	-1	0	2	2	$=$	x_{2}	
0	0	1	0	1	1	0	-1	1	$=$	x_{1}	
0	0	0	0	1	0	1	-1	0	$=$	a_{3}	

The basic solution is now feasible for the original problem, although a_{3} is still basic (it has the value 0 , as it should). We now remove the w row and column, and use z as the objective. We can also remove the a_{0} column.

z	x_{1}	x_{2}	s_{1}	s_{2}	a_{3}	rhs			
1	0	0	1	2	0	5	$=$	z	
0	0	1	-2	-1	0	2	$=$	x_{2}	
0	1	0	1	1	0	1	$=$	x_{1}	
0	0	0	1	0	1	0	$=$	a_{3}	

Phase II can now begin, but it stops immediately: this tableau is optimal. The optimal solution is $x_{1}=1, x_{2}=2, s_{1}=s_{2}=a_{3}=0$, with $z=5$.
4.12.6. This problem is a bit strange since the two constraints are equivalent and the objective is the left side of one of the constraints. Note that to minimize z I maximize $-z$, which I will call \tilde{z}. The slack variables for the constraints are both artificial. We need a Phase I, with temporary objective $w=-a_{1}-a_{2}$. The initial tableau is

w	\tilde{z}	x_{1}	x_{2}	a_{1}	a_{2}	rhs		
1	0	0	0	1	1	0	$=$	w
0	1	1	1	0	0	0	$=$	\tilde{z}
0	0	1	1	1	0	2	$=$	a_{1}
0	0	2	2	0	1	4	$=$	a_{2}

To allow a_{1} and a_{2} to be basic, we must subtract their rows from the \tilde{z} row:

w	\tilde{z}	x_{1}	x_{2}	a_{1}	a_{2}	$r\|r l l l\|$		
1	0	-3	-3	0	0	-6	$=$	w
0	1	1	1	0	0	0	$=$	\tilde{z}
0	0	1	1	1	0	2	$=$	a_{1}
0	0	2	2	0	1	4	$=$	a_{2}

x_{1} enters the basis, and a_{1} leaves (there are ties for both entering and leaving variable).

w	\tilde{z}	x_{1}	x_{2}	a_{1}	a_{2}	rhs		
1	0	0	0	3	0	0	$=$	w
0	1	0	0	-1	0	-2	$=$	\tilde{z}
0	0	1	1	1	0	2	$=$	x_{1}
0	0	0	0	-2	1	0	$=$	a_{2}

We have successfully completed Phase I, since $w=0$ (even though the artificial variable a_{2} is still basic, it has the value 0), so we can delete the w row and column. Since a_{1} is artificial, it is not allowed to enter the basis even though its entry in the \tilde{z} row is negative, and so this tableau is
optimal. The optimal solution we have found is $x_{1}=2, x_{2}=0, a_{1}=a_{2}=0, z=2$ (it is not the only optimal solution: we could take $x_{1}=2-x_{2}$ with $0 \leq x_{2} \leq 2$).
4.14.2. The initial tableau is

z	x_{1}	x_{2}^{U}	s_{1}	s_{2}	rhs					
1	-2	-1	0	0	0	$=$	z			
0	3	1	1	0	6	$=$	s_{1}			
0	1	1	0	1	4	$=$	s_{2}			

Since x_{2} is URS, it has priority to enter the basis. It enters increasing, and s_{2} leaves with the minimum ratio.

z	x_{1}	x_{2}^{U}	s_{1}	s_{2}	rhs			
1	-1	0	0	1	4	$=$	z	
0	2	0	1	-1	2	$=$	s_{1}	
0	1	1	0	1	4	$=$	x_{2}^{U}	

Now x_{1} enters and s_{1} leaves. Note that no ratio needs to be calculated for x_{2} because URS variables never leave the basis.

z	x_{1}	x_{2}^{U}	s_{1}	s_{2}	rhs			
1	0	0	$1 / 2$	$1 / 2$	5	$=$	z	
0	1	0	$1 / 2$	$-1 / 2$	1	$=$	x_{1}	
0	0	1	$-1 / 2$	$3 / 2$	3	$=$	x_{2}^{U}	

This is optimal: $x_{1}=1, x_{2}=3, s_{1}=s_{2}=0, z=5$.
E.1. Multiply the third constraint by -1 to make the right side positive. We need the artificial variable a_{0} in the first constraint. The temporary objective is $w=-a_{2}-a_{3}-a_{0}$. The tableau is

w	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	a_{2}	a_{3}	a_{0}	rhs		
1	0	0	0	0	0	0	1	1	1	0	$=$	w
0	1	7	-4	-10	-12	0	0	0	0	0	$=$	z
0	0	1	-3	0	-1	1	0	0	-1	-2	$=$	s_{1}
0	0	0	1	2	2	0	1	0	0	3	$=$	a_{2}
0	0	-1	1	0	1	0	0	1	0	1	$=$	a_{3}

To fix the a_{3} column, we need to subtract the last two rows from the w row, so the w row becomes

w	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	a_{3}	a_{0}	rhs		
1	0	1	-2	-2	-3	0	0	0	1	-4	$=$	w

To make the basic solution feasible we need a special pivot where a_{0} enters, and s_{1} leaves.

w	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	a_{2}	a_{3}	a_{0}	rhs		
1	0	2	-5	-2	-4	1	0	0	0	-6	$=$	w
0	1	7	-4	-10	-12	0	0	0	0	0	$=$	z
0	0	-1	3	0	1	-1	0	0	1	2	$=$	a_{0}
0	0	0	1	2	2	0	1	0	0	3	$=$	a_{2}
0	0	-1	1	0	1	0	0	1	0	1	$=$	a_{3}

Now the simplex method can begin. x_{2} enters and a_{0} leaves, with the smallest ratio $2 / 3$.

w	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	a_{2}	a_{3}	a_{0}	rhs		
1	0	$1 / 3$	0	-2	$-7 / 3$	$-2 / 3$	0	0	$5 / 3$	$-8 / 3$	$=$	w
0	1	$17 / 3$	0	-10	$-32 / 3$	$-4 / 3$	0	0	$4 / 3$	$8 / 3$	$=$	z
0	0	$-1 / 3$	1	0	$1 / 3$	$-1 / 3$	0	0	$1 / 3$	$2 / 3$	$=$	x_{2}
0	0	$1 / 3$	0	2	$5 / 3$	$1 / 3$	1	0	$-1 / 3$	$7 / 3$	$=$	a_{2}
0	0	$-2 / 3$	0	0	$2 / 3$	$1 / 3$	0	1	$-1 / 3$	$1 / 3$	$=$	a_{3}

Now x_{4} enters and a_{3} leaves.

w	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	a_{2}	a_{3}	a_{0}	rhs		
1	0	-2	0	-2	0	$1 / 2$	0	$7 / 2$	$1 / 2$	$-3 / 2$	$=$	w
0	1	-5	0	-10	0	4	0	16	-4	8	$=$	z
0	0	0	1	0	0	$-1 / 2$	0	$-1 / 2$	$1 / 2$	$1 / 2$	$=$	x_{2}
0	0	2	0	2	0	$-1 / 2$	1	$-5 / 2$	$1 / 2$	$3 / 2$	$=$	a_{2}
0	0	-1	0	0	1	$1 / 2$	0	$3 / 2$	$-1 / 2$	$1 / 2$	$=$	x_{4}

Now x_{1} enters and a_{2} leaves.

w	z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	a_{2}	a_{3}	a_{0}	rhs		
1	0	0	0	0	0	0	1	1	1	0	$=$	w
0	1	0	0	-5	0	$11 / 4$	$5 / 2$	$39 / 4$	$-11 / 4$	$47 / 4$	$=$	z
0	0	0	1	0	0	$-1 / 2$	0	$-1 / 2$	$1 / 2$	$1 / 2$	$=$	x_{2}
0	0	1	0	1	0	$-1 / 4$	$1 / 2$	$-5 / 4$	$1 / 4$	$3 / 4$	$=$	x_{1}
0	0	0	0	1	1	$1 / 4$	$1 / 2$	$1 / 4$	$-1 / 4$	$5 / 4$	$=$	x_{4}

Since $w=0$, this is feasible for the original problem. We discard the w row and column, and begin Phase II. x_{3} enters and x_{1} leaves.

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	a_{2}	a_{3}	a_{0}	rhs		
1	5	0	0	0	$3 / 2$	5	$7 / 2$	$-3 / 2$	$31 / 2$	$=$	z
0	0	1	0	0	$-1 / 2$	0	$-1 / 2$	$1 / 2$	$1 / 2$	$=$	x_{2}
0	1	0	1	0	$-1 / 4$	$1 / 2$	$-5 / 4$	$1 / 4$	$3 / 4$	$=$	x_{3}
0	-1	0	0	1	$1 / 2$	0	$3 / 2$	$-1 / 2$	$1 / 2$	$=$	x_{4}

This is now optimal (note that the artificial variable a_{0} can't enter the basis). The optimal solution is $x_{1}=0, x_{2}=1 / 2, x_{3}=3 / 4, x_{4}=1 / 2, s_{1}=a_{2}=a_{3}=0$.
E.2. The initial tableau is

z	x_{1}	x_{2}	x_{3}^{U}	s_{1}	s_{2}	rhs			
1	-4	2	-3	0	0	0	$=$	z	
0	2	1	1	1	0	1	$=$	s_{1}	
0	1	-1	1	0	1	0	$=$	s_{2}	

The basic solution is feasible, so we don't need Phase I. The URS variable x_{3} has first priority to enter, and enters increasing; s_{2} leaves with ratio 0 .

z	x_{1}	x_{2}	x_{3}^{U}	s_{1}	s_{2}	rhs		
1	-1	-1	0	0	3	0	$=$	z
0	1	2	0	1	-1	1	$=$	s_{1}
0	1	-1	1	0	1	0	$=$	x_{3}^{U}

Now x_{1} enters and s_{1} leaves (there is no ratio to calculate for x_{3}, as we don't care if it becomes negative).

z	x_{1}	x_{2}	x_{3}^{U}	s_{1}	s_{2}	rhs		
1	0	1	0	1	2	1	$=$	z
0	1	2	0	1	-1	1	$=$	x_{1}
0	0	-3	1	-1	2	-1	$=$	x_{3}^{U}

This is optimal: $x_{1}=1, x_{2}=0, x_{3}=-1, s_{1}=s_{2}=0, z=1$.
E.3. There are approximately $60 \times 60 \times 24 \times 365.25=3.156 \times 10^{7}$ seconds in a year, so the first computer can do about 3.156×10^{10} pivots in a year. The $n \times n$ Klee-Minty problem requires $2^{n}-1$ pivots. Since $2^{34}-1<3.156 \times 10^{10}<2^{35}-1$, the largest Klee-Minty problem this computer could do would be 34×34. The second computer could do about 3.156×10^{13} pivots in a year; it could do a 44×44 Klee-Minty problem. Typical $m \times n$ problems of this order of magnitude usually require something like $m \ln (n)$ pivots; $34 \ln (34) \approx 120$ pivots would take the first computer about 0.12 seconds, and $44 \ln (44) \approx 167$ pivots would take the second computer about 0.00017 seconds.

