Assignment 3

Due Wednesday, Oct. 11
No Lindo on this assignment! Solve by hand.
4.12.3, 4.12.6, 4.14.2

For 4.12.3 and 4.12.6, use our version of the two-phase method, not the big-M method which we are not covering. Note that I always change \geq constraints to \leq constraints. Also, to minimize z I maximize $-z$.
E.1. Solve the following, using our two-phase method:

$$
\begin{array}{lrr}
\operatorname{maximize} & z=-7 x_{1}+4 x_{2}+10 x_{3}+12 x_{4} & \\
\text { subject to } & x_{1}-3 x_{2} & -x_{4} \leq-2 \\
x_{2}+2 x_{3}+2 x_{4} & =3 \\
x_{1}-x_{2} & -x_{4} & =-1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 &
\end{array}
$$

E.2. Solve

$$
\begin{array}{lr}
\operatorname{maximize} & z=4 x_{1}-2 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{1}-x_{2}+x_{3} \leq 0 \\
& x_{1}, x_{2} \geq 0, x_{3} \text { URS }
\end{array}
$$

E.3. What size of Klee-Minty problem could be done in one year by a computer that performs one thousand pivots per second (using the most-negative-entry rule)? One million pivots per second? Approximately how long would you expect these computers to take for a typical linear programming problem of the same size as the Klee-Minty problem that takes them a year?

