Math 340: Answers to Assignment 2

4.4.2. The feasible region is shown in Figure 4 on page 61. The feasible region has three extreme points: $(0,14),(3.6,1.4)$ and $(12,0)$.

The extreme point $(0,14)$ is on the line $7 x_{1}+2 x_{2}=28$ but not on the line $2 x_{1}+12 x_{2}=24$, so this must correspond to a basic solution in which the surplus variable e_{2} for the second constraint is basic. Moreover, x_{2} has a nonzero value, so it must be basic. There must be two basic variables because there are two constraints, so the other variables e_{1} and x_{1} are nonbasic. Similarly, (3.6,1.4) corresponds to the basic feasible solution where x_{1} and x_{2} are basic, e_{1} and e_{2} nonbasic, and (12,0) corresponds to the basic feasible solution where x_{1} and e_{1} are basic and x_{2} and e_{2} are nonbasic.
4.5.3. The initial tableau is

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
1	-2	1	-1	0	0	0	$0=z$
0	3	1	1	1	0	0	$60=s_{1}$
0	1	-1	2	0	1	0	$10=s_{2}$
0	1	1	-1	0	0	1	$20=s_{3}$

The basic solution is feasible, so Phase II can begin. Using the most-negative-entry pivoting rule, x_{1} enters and s_{2} leaves, the minimum ratio being 10 .

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
1	0	-1	3	0	2	0	$20=z$
0	0	4	-5	1	-3	0	$30=s_{1}$
0	1	-1	2	0	1	0	$10=x_{1}$
0	0	2	-3	0	-1	1	$10=s_{3}$

Now x_{2} enters and s_{3} leaves.

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	
1	0	0	$3 / 2$	0	$3 / 2$	$1 / 2$	$25=z$
0	0	0	1	1	-1	-2	$10=s_{1}$
0	1	0	$1 / 2$	0	$1 / 2$	$1 / 2$	$15=x_{1}$
0	0	1	$-3 / 2$	0	$-1 / 2$	$1 / 2$	$5=x_{2}$

The optimal solution is $x_{1}=15, x_{2}=5, x_{3}=0, s_{1}=10, s_{2}=s_{3}=0, z=25$.
4.8.5. The initial tableau is

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs			
1	-1	-2	0	0	0	$=$	z	
0	-1	1	1	0	2	$=$	s_{1}	
0	-2	1	0	1	1	$=$	s_{2}	

x_{2} enters; s_{2} leaves, having the minimum ratio 1 .

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs			
1	-5	0	0	2	2	$=$	z	
0	1	0	1	-1	1	$=$	s_{1}	
0	-2	1	0	1	1	$=$	x_{2}	

x_{1} enters; s_{1} leaves, having the only positive entry in the x_{1} column.

z	x_{1}	x_{2}	s_{1}	s_{2}	rhs				
1	0	0	5	-3	7	$=$	z		
0	1	0	1	-1	1	$=$	x_{1}		
0	0	1	2	-1	3	$=$	x_{2}		

s_{2} enters, but there are no ratios to calculate, so the problem is unbounded.
4.11.4. "Ties are broken in favor of lower numbered rows" means our normal pivoting rules. The initial tableau is

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs				
1	3	-1	6	0	0	0	0	0	$=$	z		
0	9	1	-9	-2	1	0	0	0	$=$	s_{1}		
0	1	$1 / 3$	-2	$-1 / 3$	0	1	0	0	$=$	s_{2}		
0	-9	-1	9	2	0	0	1	1	$=$	s_{3}		

x_{2} is the only candidate to enter; s_{1} leaves (tied for least ratio 0 , so lower-numbered row 1 wins over row 2).

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs			
1	12	0	-3	-2	1	0	0	0	$=$	z	
0	9	1	-9	-2	1	0	0	0	$=$	x_{2}	
0	-2	0	1	$1 / 3$	$-1 / 3$	1	0	0	$=$	s_{2}	
0	0	0	0	0	1	0	1	1	$=$	s_{3}	

x_{3} has the most negative entry in the z row; s_{2} leaves with the only ratio.

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs					
1	6	0	0	-1	0	3	0	0	$=$	z			
0	-9	1	0	1	-2	9	0	0	$=$	x_{2}			
0	-2	0	1	$1 / 3$	$-1 / 3$	1	0	0	$=$	x_{3}			
0	0	0	0	0	1	0	1	1	$=$	s_{3}			

x_{4} is the only candidate to enter; x_{2} leaves (with lower-numbered row).

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs		
1	-3	1	0	0	-2	12	0	0	$=$	z
0	-9	1	0	1	-2	9	0	0	$=$	x_{4}
0	1	$-1 / 3$	1	0	$1 / 3$	-2	0	0	$=$	x_{3}
0	0	0	0	0	1	0	1	1	$=$	s_{3}

x_{1} has the most negative entry in the z row; x_{3} leaves, with the only ratio.

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs						
1	0	0	3	0	-1	6	0	0	$=$	z				
0	0	-2	9	1	1	-9	0	0	$=$	x_{4}				
0	1	$-1 / 3$	1	0	$1 / 3$	-2	0	0	$=$	x_{1}				
0	0	0	0	0	1	0	1	1	$=$	s_{3}				

s_{1} has the only negative entry in the z row: x_{4} leaves (lower-numbered row with ratio 0)

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs						
1	0	-2	12	1	0	-3	0	0	$=$	z				
0	0	-2	9	1	1	-9	0	0	$=$	s_{1}				
0	1	$1 / 3$	-2	$-1 / 3$	0	1	0	0	$=$	x_{1}				
0	0	2	-9	-1	0	9	1	1	$=$	s_{3}				

s_{2} has the most negative entry in the z row; x_{1} leaves with the minimum ratio 0 . But this takes us back to the original tableau (with basis s_{1}, s_{2}, s_{3}, so cycling has occurred.
4.11.5. Using Bland's Rule, the first pivot is the same (only one candidate to enter; for leaving, s_{1} comes before s_{2}). The second pivot is the same (for entering, x_{3} comes before x_{4}; only one candidate to leave). The third pivot is the same (only one candidate to enter; for leaving, x_{2} comes before x_{3}). The fourth pivot is the same (for entering, x_{1} comes before s_{1}; only one candidate to leave). On the fifth pivot, s_{1} is the only candidate to enter, but x_{1} leaves instead of x_{4}. The result is

	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs		
1	3	-1	6	0	0	0	0	0	$=$	z
0	-3	-1	6	1	0	-3	0	0	$=$	x_{4}
0	3	-1	3	0	1	-6	0	0	$=$	s_{1}
0	-3	1	-3	0	0	6	1	1	$=$	s_{3}

Now x_{2} enters, and s_{3} leaves in a nondegenerate pivot.

z	x_{1}	x_{2}	x_{3}	x_{4}	s_{1}	s_{2}	s_{3}	rhs		
1	0	0	3	0	0	6	1	1	$=$	z
0	-6	0	3	1	0	3	1	1	$=$	x_{4}
0	0	0	0	0	1	0	1	1	$=$	s_{1}
0	-3	1	-3	0	0	6	1	1	$=$	x_{2}

This is optimal: $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1, s_{1}=1, s_{2}=s_{3}=0$. Cycling was avoided.
E.1. The initial tableau is

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	-2	-3	-3	0	0	0	0	$=$	z
0	3	2	0	1	0	0	60	$=$	s_{1}
0	-1	1	4	0	1	0	10	$=$	s_{2}
0	2	-2	5	0	0	1	5	$=$	s_{3}

x_{2} enters and s_{2} leaves.

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	-5	0	9	0	3	0	30	$=$	z
0	5	0	-8	1	-2	0	40	$=$	s_{1}
0	-1	1	4	0	1	0	10	$=$	x_{2}
0	0	0	13	0	2	1	25	$=$	s_{3}

x_{1} enters and s_{1} leaves.

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	rhs		
1	0	0	1	1	1	0	70	$=$	z
0	1	0	$-8 / 5$	$1 / 5$	$-2 / 5$	0	8	$=$	x_{1}
0	0	1	$12 / 5$	$1 / 5$	$3 / 5$	0	18	$=$	x_{2}
0	0	0	13	0	2	1	25	$=$	s_{3}

This is optimal. The optimal solution is $x_{1}=8, x_{2}=18, x_{3}=s_{1}=s_{2}=0, s_{3}=25, z=70$.
E.2. Cycling is rare in problems that arise in practice, although it does occur occasionally. On the other hand, from the theoretical point of view, the fact that cycling can be avoided is very important, for two reasons:
(1) We could not call the Simplex Method an algorithm if it was not guaranteed to terminate.
(2) We used the fact that the Simplex Method terminates to prove that every Linear Programming problem falls into one of the three categories: infeasible, unbounded, or having an optimal solution which is basic.

