
Math 340: Answers to Assignment 10
12.6.3. The total profit, i.e. revenue minus costs, is f(q1, q2) = (200−q1−q2)(q1+q2)−q1−.5q2

2 .

We want 0 =
∂f

∂q1
= −2q1 − 2q2 + 199 and 0 =

∂f

∂q2
= −2q1 − 3q2 + 200. Solving these equations,

we get q1 = 98.5, q2 = 1. The Hessian matrix

(

−2 −2
−2 −3

)

is negative definite, so f is concave and

this is the global maximum.

12.6.6. With f(x1, x2) = x3
1 − 3x1x

2
2 + x4

2 we have 0 =
∂f

∂x1
= 3x2

1 − 3x2
2 = 3(x1 − x2)(x1 + x2)

and 0 =
∂f

∂x2
= −6x1x2 + 4x3

2. From the first equation, x2 = ±x1. If x2 = x1, the second equation

says −6x2
1 + 4x3

1 = 0 so x1 = 0 or 3/2. If x2 = −x1, the second equation says 6x2
1 + 4x3

1 = 0, so
again x1 = 0 or x1 = −3/2. Thus there are three critical points: (0, 0), (3/2, 3/2) and (−3/2, 3/2).

The Hessian matrix is

(

6x1 −6x2

−6x2 −6x1 + 12x2
2

)

.

At (0, 0) this matrix is all 0. But notice that f(x1, x2) > 0 for some (x1, x2) near (0, 0) (e.g.
(t, 0)) and < 0 for others (e.g. (t,t) where t > 0. So (0, 0) is a saddle point.

At (3/2, 3/2) the Hessian matrix is

(

9 −9
−9 18

)

which is positive definite, so we have a local

minimum.

At (−3/2, 3/2) the Hessian matrix is

(

−9 −9
−9 36

)

which is neither positive definite nor negative

definite, and we have another saddle point.

12.9.1. The revenue is (60 − 0.5p1)p1 + (40 − p2)p2. If the capacity is c, then operating costs
are 10c, and we have constraints c ≥ 60− 0.5p1 and c ≥ 40− p2. We could also include constraints
p1 ≥ 0, p2 ≥ 0, p1 ≤ 120 and p2 ≤ 40 (so the demand won’t ever be negative), but I won’t do so.
The problem, in the form of (26), is

maximize (60 − 0.5p1)p1 + (40 − p2)p2 − 10c

subject to − c − .5p1 ≤ −60

− c − p2 ≤ −40

The KKT conditions are
60 − p1 + .5λ1 = 0

40 − 2p2 + λ2 = 0

−10 + λ1 + λ2 = 0

λ1(−60 + c + .5p1) = 0

λ2(−40 + c + p2) = 0

−c − .5p1 ≤ −60

−c − p2 ≤ −40

all λi ≥ 0

From the first three KKT equations, p1 = 60+.5λ1, λ2 = 10−λ1, and p2 = 20−.5λ2 = 15+.5λ1.
If λ1 > 0 we must have −60 + c + .5p1 = 0 so c = 60 − .5p1 = 30 − .25λ1. In the fifth KKT

condition we’d have (10 − λ1)(15 − .75λ1) = 0 so λ1 = 10 or λ1 = 20. But λ1 = 20 would make
λ2 = −10 which is not allowed. For λ1 = 10 we get a solution p1 = 65, p2 = 20, c = 27.5, λ2 = 0.

On the other hand, if λ1 = 0 we have p1 = 60, λ2 = 10, p2 = 25, and −15 + c = 0 so
c1 = 15, but this violates the sixth KKT condition −c − .5p1 ≤ −60. So the only solution to the



KKT conditions is p1 = 65, p2 = 20, c = 27.5. Since the objective is concave and the constraints
are linear, this solution must be the global maximum. The power company sets the prices at $65
per kilowatt-hour at peak times and $10 per kilowatt-hour at off-peak times, and maintains 27.5
kilowatt-hours of capacity. Of course, these numbers are wildly unrealistic.

12.9.10. The KKT conditions say

2x1 − 6 + λ1 − λ2 = 0

2x2 − 10 + λ1 − λ3 = 0

λ1(7 − x1 − x2) = 0

λ2x1 = 0

λ3x2 = 0

x1 + x2 ≤ 7

−x1 ≤ 0

−x2 ≤ 0

all λi ≥ 0

Case 1: λ3 = 0. The second condition says λ1 = 10 − 2x2.
Case 1(a): λ1 = 0. Then x2 = 5. The first condition says λ2 = 2x1 − 6 and then the fourth

says (2x1 − 6)x1 = 0 so x1 = 0 or x1 = 3. But x1 = 0 would make λ2 < 0, while x1 = 3 would
violate the sixth condition.

Case 1(b): λ1 > 0. Then x1 +x2 = 7, or x1 = 7−x2. The first condition says 18−4x2−λ2 = 0
so λ2 = 18 − 4x2, and then the fourth says (18 − 4x2)(7 − x2) = 0, so either x2 = 4.5 or x2 = 7.
x2 = 4.5 produces a solution:

x1 = 2.5, x2 = 4.5, λ1 = 1, λ2 = λ3 = 0
On the other hand, x2 = 7 would make λ1 < 0.
The objective is convex and the constraints are linear, so having one solution of the KKT

conditions is enough: it is automatically the global minimum. But let’s continue anyway.
Case 2: λ3 > 0. Then x2 = 0; the second KKT condition says λ1 = 10+λ3. So λ1 > 0, x1 = 7,

and λ2 = 0. But then the first KKT condition says 8 + λ1 = 0, which is impossible.

E.1. The function f(x, y) has gradient ∇f(x, y) =

(

2 − 2x + y − xy2

x − y − x2y

)

and Hessian H(x, y) =
(

−2 − y2 1 − 2xy
1 − 2xy −1 − x2

)

. Newton’s method is the iteration vn+1 = vn − H(vn)( − 1)∇f(vn). With

v0 =

(

1
0

)

we have ∇f(v0) =

(

0
1

)

and H(v0) =

(

−2 1
1 −2

)

so v1 =

(

4/3
2/3

)

. Similarly,

v2 =

(

1.132401862
.5362608116

)

and v3 =

(

1.112294623
.4980495355

)

. Since v3 is fairly close to v2, it does seem to be

converging. The Hessian matrix at v3 is H(v3) =

(

−2.248053340 −.107955641
−.107955641 −2.237199328

)

. Note that

−H(v3) is positive definite, so it appears to be converging to a local maximum.

E.2(a). The objective value at (1, 0) is c1, while the value at (0, 0) is 0 and the value at (0, 1) is
c2. So for (1, 0) to be a global maximum, it’s certainly necessary that c1 ≥ c2 and c1 ≥ 0. On the
other hand, if c1 ≥ c2 and c1 ≥ 0 then

f(x1, x2) = c1x1 + c2x
2
2 ≤ c1x1 + c1x

2
2 ≤ c1(x1 + x2) ≤ c1



so this is also sufficient for (1, 0) to be a global maximum.
(b). Adding a slack variable s1, the KKT conditions are

−λ1 + λ2 = −c1

2c2x2 − λ1 + λ3 = 0
x1 + x2 + s1 = 1
λ1s1 = λ2x1 = λ3x2 = 0
x1, x2, s1, λ1, λ2, λ3 ≥ 0

If x1 = 1, x2 = 0 is a solution, complementary slackness says λ2 = 0, and so we must have
c1 = λ1 ≥ 0.

If c1 ≥ 0 and c1 ≥ c2, we already know (1, 0) is a global maximum from (a), so it’s also a local
maximum.

If c2 > c1 = 0, f(1, 0) = 0 but f(x1, x2) > 0 for points arbitrarily close to (1, 0) with x2 > 0,
so in this case (1, 0) is not a local maximum.

If c2 > c1 > 0 with x1 +x2 ≤ 1, f(x1, x2) ≤ f(1−x2, x2) = c1− c1x2 + c2x
2
2, but c1x2 > −c2x

2
2

if x2 is small, so f(x1, x2) < c1 = f(1, 0). Thus in this case (1, 0) is a local maximum.
So to sum up: (1, 0) is a local maximum if c2 ≤ c1 = 0 or if c1 > 0.

E.3. The KKT conditions are

L − 4λ1 + λ2 = 0

K − λ1 + λ3 = 0

λ1(8 − 4K − L) = 0

λ2K = 0

λ3L = 0

4K + L ≤ 8

K,L, λ1, λ2, λ3 ≥ 0

Case 1: If λ1 = 0, the first KKT condition says L + λ2 = 0, which implies L = λ2 = 0, and
the second says K + λ3 = 0, which implies K = λ3 = 0. The KKT conditions are indeed satisfied
with K = L = λ1 = λ2 = λ3 = 0, and the objective value at K = L = 0 is 0.

Case 2: If λ1 > 0, 4K + L = 8. Thus at least one of K and L is positive, implying that λ2 or
λ3 is 0. If λ2 = 0, L = 4λ1 > 0, but that implies λ3 = 0. Similarly, if λ3 = 0, K = λ1 > 0, but that
implies λ2 = 0. So we must have λ2 = λ3 = 0, L = 4λ1 and K = λ1. Then 4K + L = 8λ1 = 8,
so λ1 = 1, K = 1 and L = 4. The KKT conditions are satisfied with K = 1, L = 4, λ1 = 1,
λ2 = λ3 = 0, and the objective value is 4. This agrees with LINGO’s solution shown in Figure 2
on page 661.

E.4(a). We are maximizing a non-constant linear (and thus concave) function subject to con-
straints gi(x1, x2) ≤ bi where gi are convex functions). Any local maximum is thus a global
maximum. If there were two local maxima, all points of the straight line segment joining them
would have to be maxima as well, and couldn’t lie in the interior of the feasible region (because the
gradient is not 0). So this line segment would have to be in the boundary of the feasible region.
But the boundary of the feasible region is composed of pieces of the curves x2

1 + 3x2
2 = 4 and

x2
1 − x2 = 0, and has no straight segments.

(b). The KKT conditions are

2 − 2x1λ1 − 2x1λ2 = 0



3 − 6x2λ1 + λ2 = 0
x2

1 + 3x2
2 ≤ 4

x2
1 − x2 ≤ 0

λ1(4 − x2
1 − 3x2

2) = 0
λ2(x

2
1 − x2) = 0

λ1, λ2 ≥ 0

From the second condition, 6x2λ1 = 3 + λ2 > 0 so λ1 > 0andx2 > 0. Therefore x2
1 + 3x2

2 = 4.
Case 1: λ2 = 0. Then the first KKT condition says x1λ1 = 1 and the second says x2λ1 = 1/2,

so x1 = 2x2. So x2
1 + 3x2

2 = 7x2
2 = 4, i.e. x2 = 2/

√
7, x1 = 4/

√
7, λ1 = 1/x1 =

√
7/4. But then

x2
1 − x2 = 16/7 − 2/

√
7 > 0, so this is not a solution.

Case 2: x2
1 − x2 = 0. Now with x2 = x2

1 we have x2
1 + 3x2

2 = x2 + 3x2
2 = 4. This has roots

x2 = 1 and x2 = −4/3. But since we know x2 > 0 it must be x2 = 1 and x1 = ±1. The first
KKT condition says x1(λ1 + λ2) = 1, so it must be x1 = 1, and λ1 + λ2 = 1. From the second
KKT condition, 6λ1 − λ2 = 3. Solving these two linear equations for λ1 and λ2, we get λ1 = 4/7,
λ2 = 3/7, which is feasible. Thus we have a solution of the KKT equations:

x1 = x2 = 1, λ1 = 4/7, λ2 = 3/7

(c). The Lingo file should look like this:
model:

max=2*x1+3*x2;

x1^2 + 3*x2^2 <= 4;

x1^2 - x2 <= 0;

@free(x1);

@free(x2);

end

Lingo’s output is
Local optimal solution found at step: 10

Objective value: 5.000000

Variable Value Reduced Cost

X1 0.9999999 0.0000000

X2 1.000000 0.0000000

Row Slack or Surplus Dual Price

1 5.000000 1.000000

2 0.2279561E-06 -0.5714284

3 0.3080988E-06 -0.4285715

This agrees (with an allowance for roundoff error) with our x1 = x2 = 1; the dual prices for
rows 2 and 3 correspond to our λ1 = 4/7 and λ2 = 3/7 (with a different sign convention).


