Assignment 10

Not for handing in
12.6.3, 12.6.6, 12.9.1, 12.9.10
E. 1 Perform three steps of Newton's method for finding a critical point of $f(x, y)=$ $2 x-x^{2}+x y-y^{2} / 2-x^{2} y^{2} / 2$, starting at $x=1, y=0$. Does this appear to be converging toward a local maximum or a local minimum?
E. 2 Consider the quadratic programming problem

$$
\begin{aligned}
\operatorname{maximize} & c_{1} x_{1}+c_{2} x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Under what conditions on the constants c_{1} and c_{2} do each of the following occur?
(a). The global maximum is at $(1,0)$. Hint: compare the value there to the values at the other corners of the feasible region.
(b). A local maximum is at $(1,0)$.
E. 3 Use the Karush-Kuhn-Tucker conditions to solve Example 8 on page 660:

$$
\begin{aligned}
\operatorname{maximize} & K L \\
\text { subject to } & 4 K+L \leq 8 \\
& K, L \geq 0
\end{aligned}
$$

E. 4 Consider the problem

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & x_{1}^{2}+3 x_{2}^{2} \leq 4 \\
& x_{1}^{2}-x_{2} \leq 0
\end{aligned}
$$

(a) Why (without solving the problem) can you be sure that there is only one local maximum for this problem?
(b) Use the Karush-Kuhn-Tucker conditions to solve the problem.
(c) Use LINGO to solve the problem, and compare the values in the Dual Price column to the λ_{1} and λ_{2} values you found in (b).

