## Math 340 sec. 101: Answers to Assignment 1

3.3.10(a). The main point is that he can pay for the dollars he buys with the francs he buys, and vice versa. So (if he starts out with nothing), at 12:01 he has $x_{1}-.25 x_{2}$ dollars and $x_{2}-3 x_{1}$ francs. The only requirements are that both of these must be nonnegative (i.e. he must be able to pay for his purchases). So the problem is

$$
\begin{array}{lr}
\max & x_{1}-.25 x_{2} \\
\text { s.t. } & x_{1}-.25 x_{2} \geq 0 \\
& -3 x_{1}+x_{2} \geq 0 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(b). The graph below shows part of the feasible region, which is unbounded, and one of the isoprofit lines. To increase the profit, we want to slide the isoprofit line to the right. No matter how far we go, it will still intersect the feasible region. Thus the problem is unbounded.

3.4.3(a). Let $x_{1}$ and $x_{2}$ be the number of pounds of the Food 1 and Food 2 respectively that Peg buys. The problem is
$\min 7 x_{1}+x_{2}$
s.t. $\quad 3 x_{1}+x_{2} \geq 12$
$x_{1}+x_{2} \geq 6$
$x_{1}, x_{2} \geq 0$
Solving the problem (either graphically or with LINDO), the optimal solution is $x_{1}=0, x_{2}=12$. This results in 12 units of vitamin C, which is an excess of 6 units.
(b). Solving the two equations $3 x_{1}+x_{2}=12$ and $x_{1}+x_{2}=6$, we get $x_{1}=3$ and $x_{2}=3$. This costs $\$ 24$, while the optimal solution costs only $\$ 12$. Even without calculating it, we should have known this would be more expensive, because it would be a feasible solution of the original problem but not the optimal solution.
3.5.5. The variables $x_{1}$ to $x_{6}$ represent the numbers of workers in each of the 6 possible pairs of shifts:

$$
\begin{array}{ll}
x_{1} 12 \mathrm{am}-6 \mathrm{am}, 6 \mathrm{am}-12 \mathrm{pm} & x_{2} 12 \mathrm{am}-6 \mathrm{am}, 12 \mathrm{pm}-6 \mathrm{pm} \\
x_{3} & 12 \mathrm{am}-6 \mathrm{am}, 6 \mathrm{pm}-12 \mathrm{am} \\
x_{5} & 6 \mathrm{am}-12 \mathrm{pm}, 12 \mathrm{pm}-6 \mathrm{pm} \\
x_{5} \mathrm{am}-12 \mathrm{pm}, 6 \mathrm{pm}-12 \mathrm{am} & x_{6} 12 \mathrm{pm}-6 \mathrm{pm}, 6 \mathrm{pm}-12 \mathrm{am} \\
\text { where only } x_{2} \text { and } x_{5} \text { have non-consecutive shifts. The problem is }
\end{array}
$$

```
\(\min 12 x_{1}+18 x_{2}+12 x_{3}+12 x_{4}+18 x_{5}+12 x_{6}\)
s.t. \(x_{1}+x_{2}+x_{3} \geq 15\)
    \(x_{1}+x_{4}+x_{5} \geq 5\)
    \(x_{2}+x_{4}+x_{6} \geq 12\)
    \(x_{3}+x_{5}+x_{6} \geq 6\)
all \(x_{i} \geq 0\)
```

Actually the objective should all be multiplied by 12 to get the total wages per day, since the $\$ 18$ and $\$ 20$ are per hour but each person works 12 hours. But these numbers are more convenient.

According to LINDO, an optimal solution, with an objective value of 276 , is $x_{1}=5, x_{2}=8$, $x_{3}=2, x_{4}=x_{5}=0, x_{6}=4$. It turns out that this is not the only optimal solution: another is $x_{1}=1, x_{2}=8, x_{3}=6, x_{4}=4, x_{5}=x_{6}=0$. LINDO might give you either of these.
3.8.2. Let $J_{i}$ be the number of pounds of grade $i$ oranges used for juice, and $B_{i}$ the number of pounds of grade $i$ oranges sold in bags, where $i$ is 6 or 9 . We have the constraints $J_{6}+B_{6} \leq 120000$ and $J_{9}+B_{9} \leq 100000$, giving the total amounts available of each grade. The constraint on the quality of oranges in bags can be written as $6 B_{6}+9 B_{9} \geq 7\left(B_{6}+B_{9}\right)$, i.e. $-B_{6}+2 B_{9} \geq 0$. Similarly, the constraint on the quality of juice can be written as $6 J_{6}+9 J_{9} \geq 8\left(J_{6}+J_{9}\right)$ or $-2 J_{6}+J_{9} \geq 0$. The objective is to maximize profit, which is $.45\left(J_{6}+J_{9}\right)+.3\left(B_{6}+B_{9}\right)$. So the LINDO file is:

```
max . 45 J6 + .45 J9 + . 3 B6 + . 3 B9
st
J6 + B6 <= 120000
J9 + B9 <= 100000
-B6 + 2 B9 >= 0
-2 J6 + J9 >= 0
```

LINDO's optimal solution is
OBJECTIVE FUNCTION VALUE

1) $\quad 78000.00$

| VARIABLE | EE VALUE | REDUCED | COST |
| :---: | :---: | :---: | :---: |
| J6 | 26666.666016 | 0.000000 |  |
| J9 | 53333.332031 | 0.000000 |  |
| B6 | 93333.335938 | 0.000000 |  |
| B9 | 46666.667969 | 0.000000 |  |
| ROW SL | SLACK OR SURPLUS | DUAL PRICES |  |
| 2) | 0.000000 | 0.150000 |  |
| 3) | 0.000000 | 0.600000 |  |
| 4) | 0.000000 | -0.150000 |  |
| 5) | 0.000000 | -0.150000 |  |

Thus of the Grade 6 oranges, 26667 lb are used for juice and the remaining 93333 lb sold in bags, while 53333 lb of the Grade 9 oranges are used for juice and 46667 lb sold in bags.

## Oil Refinery Problem.

I used the following variables. Each represents an amount in barrels per day.
crude1, crude2
ln, mn, hn
lo, ho, res
lnref, mnref, hnref rfg
crude oils light, medium, heavy naphthas light and heavy oil and residuum naphthas used in reforming reformed gasoline

```
locr, hocr light and heavy oils used in cracking
cro, crg
lnprem, mnprem, hnprem
crgprem rfgprem
lnreg, mnreg, hnreg
crgreg rfgreg
cracked oil and gasoline
naphthas used in premium gasoline
cracked and reformed gasoline used in premium gasoline
naphthas used in regular gasoline
cracked and reformed gasoline used in regular gasoline
lojf, hojf, crojf, resjf oils and residuum used for jet fuel
lofo, hofo, crofo, resfo oils and residuum used for fuel oil
reslub
residuum used for lube oil
prem, reg, jf, fo, lube final products
Here was my LINDO file:
max
! revenue from sales
35 prem + 34 reg + 29 jf + 28.5 fo + 26 lube
! - crude oil costs
-24 crude1 - 26 crude2
! - cracking and reforming costs
- locr - hocr - lnref - mnref - hnref
st
! yields from distillation
distln) ln -. 1 crude1 -. 15 crude2 = 0
distmn) mn -. 2 crude1 -. 25 crude2 = 0
disthn) hn -. 2 crude1 -. 18 crude2 = 0
distlo) lo -. 12 crude1 -.08 crude2 = 0
distho) ho -. }20\mathrm{ crude1 -. 19 crude2 = 0
distres) res-. 13 crude1 -. 12 crude2 = 0
! material balance for napthas
lnmb) ln - lnreg - lnprem - lnref = 0
mnmb) mn - mnreg - mnprem - mnref = 0
hnmb) hn - hnreg - hnprem - hnref = 0
    ! yield from reforming
refgas) rfg - . }6\mathrm{ lnref - . }52\mathrm{ mnref -. 45 hnref = 0
    ! material balance for light and heavy oils
lomb) lo - locr - lojf - lofo = 0
homb) ho - hocr - hojf - hofo = 0
! yields from cracking
crackoil) cro - . }68\mathrm{ locr - . }75\mathrm{ hocr = 0
crackgas) crg - . 28 locr - . 20 hocr = 0
! material balance for cracked oil and residuum
cromb) cro - crojf - crofo = 0
resmb) res - resjf - resfo - reslub = 0
! material balance for reformed and cracked gas
rfgmb) rfg - rfgreg - rfgprem = 0
crgmb) crg - crgreg - crgprem = 0
! material balance for regular and premium gasoline
regmb) reg - lnreg - mnreg - hnreg - rfgreg - crgreg = 0
premb) prem - lnprem - mnprem - hnprem - rfgprem - crgprem = 0
! octane-number constraints for regular and premium gasoline
regoct) 90 lnreg + 80 mnreg + 70 hnreg + 115 rfgreg + 105 crgreg
```

```
    - 84 reg >= 0
    premoct) 90 lnprem + 80 mnprem + 70 hnprem + 115 rfgprem + 105 crgprem
    - 94 prem >= 0
    ! material balance for jet fuel
    jfmb) jf - lojf - hojf - crojf - resjf = 0
    !vapour-pressure constraints on jet fuel
    jfvp1) 10 lojf + 6 hojf + 15 crojf + . 5 resjf - 8 jf >= 0
    jfvp2) 10 lojf + 6 hojf + 15 crojf + . 5 resjf - 10 jf <= 0
    ! fuel oil production
    folo) 18 lofo - 10 fo = 0
    focr) 18 crofo - 4 fo = 0
    foho) 18 hofo - 3 fo = 0
    fore) 18 resfo - fo = 0
    ! lube oil yield
    lubep) lube - . 5 reslub = 0
    ! availabilities of crude oil
    cr1bd) crude1 <= 20000
    cr2bd) crude2 <= 30000
    ! capacities for distillation, reforming and cracking
    distbd) crude1+crude2 <= 45000
    refbd) lnref + mnref + hnref <= 10000
    crackbd) locr + hocr <= 8000
    ! bounds on lube production
    lubelo) lube >= 500
    lubehi) lube <= 1000
    end
    LINDO's solution was:
    LP OPTIMUM FOUND AT STEP
    2 1
    OBJECTIVE FUNCTION VALUE
    1) 160553.6
VARIABLE
                    VALUE
    PREM
    REG
        24664.259766 0.000000
        15519.264648 0.000000
        FO
            0.000000
                        1.300012
                500.000000
                        0.000000
    LUBE
CRUDE1
    20000.000000 0.000000
CRUDE2 25000.000000 0.000000
    LOCR 3296.213867 0.000000
    HOCR 4703.786133 0.000000
    LNREF 0.000000 5.719140
    MNREF 0.000000 3.138820
    HNREF 3089.887695 0.000000
        LN 5750.000000 0.000000
        MN 10250.000000 0.000000
        HN 8500.000000 0.000000
        LO 4400.000000 0.000000
        HO 8750.000000 0.000000
```

| RES | 5600.000000 | 0.000000 |
| ---: | ---: | ---: |
| LNREG | 5750.000000 | 0.000000 |
| LNPREM | 0.000000 | 5.040250 |
| MNREG | 10250.000000 | 0.000000 |
| MNPREM | 0.000000 | 2.520125 |
| HNREG | 5410.112305 | 0.000000 |
| HNPREM | 0.000000 | 0.000000 |
| RFG | 1390.449463 | 0.000000 |
| LOJF | 1103.786133 | 0.000000 |
| LOFO | 0.000000 | 0.000000 |
| HOJF | 4046.213867 | 0.000000 |
| HOFO | 0.000000 | 0.000000 |
| CRO | 5769.265137 | 0.000000 |
| CRG | 1863.697144 | 0.000000 |
| CROJF | 5769.265137 | 0.000000 |
| CROFO | 0.000000 | 0.000000 |
| RESJF | 4600.000000 | 0.000000 |
| RESFO | 0.000000 | 0.000000 |
| RESLUB | 1000.000000 | 0.000000 |
| RFGREG | 1390.449463 | 0.000000 |
| RFGPREM | 0.000000 | 11.340564 |
| CRGREG | 1863.697144 | 0.000000 |
| CRGPREM | 0.000000 | 8.820438 |


| ROW | SLACK OR SURPLUS | DUAL PRICES |
| ---: | :---: | ---: |
| DISTLN) | 0.000000 | 38.228981 |
| DISTMN) | 0.000000 | 31.180679 |
| DISTHN) | 0.000000 | 24.132380 |
| DISTLO) | 0.000000 | 29.834795 |
| DISTHO) | 0.000000 | 28.165205 |
| DISTRES) | 0.000000 | 25.869518 |
| LNMB) | 0.000000 | -38.228981 |
| MNMB) | 0.00000 | -31.180679 |
| HNMB) | 0.000000 | -24.132380 |
| REFGAS) | 0.000000 | 55.849731 |
| LOMB) | 0.000000 | -29.834795 |
| HOMB) | 0.000000 | -28.165205 |
| CRACKOIL) | 0.000000 | 31.921782 |
| CRACKGAS) | 0.000000 | 48.801430 |
| CROMB) | 0.000000 | -31.921782 |
| RESMB) | 0.000000 | -25.869518 |
| RFGMB) | 0.000000 | -55.849731 |
| CRGMB) | 0.000000 | -48.801430 |
| REGMB) | 0.000000 | -25.205725 |
| PREMB) | 0.000000 | -7.564848 |
| REGOCT) | 0.000000 | -0.704830 |
| PREMOCT) | 0.000000 | -0.452818 |
| JFMB) | 0.000000 | 25.660820 |
| JFVP1) | 0.000000 | -0.417397 |


| JFVP2) | 31038.529297 | 0.000000 |
| ---: | ---: | ---: |
| FOLO) | 0.000000 | -1.657489 |
| FOCR) | 0.000000 | -1.773432 |
| FOHO | 0.000000 | -1.564734 |
| FORE) | 0.000000 | -1.437196 |
| LUBEP) | 0.000000 | 51.739037 |
| CR1BD) | 0.000000 | 0.745904 |
| CR2BD) | 5000.000000 | 0.000000 |
| DISTBD) | 0.000000 | 2.715860 |
| REFBD) | 6910.112305 | 0.000000 |
| CRACKBD) | 0.000000 | 4.536417 |
| LUBELO) | 0.000000 | -25.739038 |
| LUBEHI) | 500.000000 | 0.000000 |

According to this, we buy all the available Crude I (20000 barrels) and 25000 barrels of Crude 2 (reaching the limit on distillation). All 5750 barrels of light naphtha, all 10250 barrels of medium naphtha, and about 5410 of the 8500 barrels of heavy naphtha produced go into regular gasoline. The other 3090 barrels of heavy naphtha are used to make reformed gasoline (about 1390 barrels), which then goes into regular gasoline. Of the 4400 barrels of light oil, 3296 barrels go into cracking and the other 4046 barrels go into jet fuel. Of the 8750 barrels of heavy oil, 4704 barrels go into cracking and the other 4046 barrels go into jet fuel. The cracking process produces 5760 barrels of cracked oil, which all goes into jet fuel, and 1864 barrels of cracked gasoline, which all goes into regular gasoline. Of the 5600 barrels of residuum, 4600 barrels go into jet fuel and the remaining 1000 barrels into lube oil. The end products are 24664 barrels of regular gasoline, 15519 barrels of jet fuel and 500 barrels of lube oil.

