Duality and Tableaus

Consider the (primal) linear programming problem
maximize $\quad z=2 x_{1}+3 x_{2}+4 x_{3}$
subject to $\quad 5 x_{1}+6 x_{2}+7 x_{3} \quad \leq 8$
$9 x_{1}+10 x_{2}+11 x_{3} \leq 12$
$x_{1}, x_{2}, x_{3} \geq 0$
The dual of this problem is
$\operatorname{minimize} \quad w=8 y_{1}+12 y_{2}$
subject to $\quad 5 y_{1}+9 y_{2} \geq 2$

$$
6 y_{1}+10 y_{2} \geq 3
$$

$$
7 y_{1}+11 y_{2} \geq 4
$$

$$
y_{1}, y_{2} \geq 0
$$

Initial tableau for the primal problem:

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	-2	-3	-4	0	0	0	$=$	z
0	5	6	7	1	0	8	$=$	s_{1}
0	9	10	11	0	1	12	$=$	s_{2}

Initial tableau for the dual problem:

w	y_{1}	y_{2}	η_{1}	η_{2}	η_{3}	rhs		
1	8	12	0	0	0	0	$=$	w
0	-5	-9	1	0	0	-2	$=$	η_{1}
0	-6	-10	0	1	0	-3	$=$	η_{2}
0	-7	-11	0	0	1	-4	$=$	η_{3}

Primal tableau after pivot (x_{3} enters, s_{2} leaves):

z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	rhs		
1	$14 / 11$	$7 / 11$	0	0	$4 / 11$	$48 / 11$	$=$	z
0	$-8 / 11$	$-4 / 11$	0	1	$-7 / 11$	$4 / 11$	$=$	s_{1}
0	$9 / 11$	$10 / 11$	1	0	$1 / 11$	$12 / 11$	$=$	x_{3}

Dual tableau after pivot (y_{2} enters, η_{3} leaves):

w	y_{1}	y_{2}	η_{1}	η_{2}	η_{3}	rhs		
1	$4 / 11$	0	0	0	$12 / 11$	$-48 / 11$	$=$	w
0	$8 / 11$	0	1	0	$-9 / 11$	$14 / 11$	$=$	η_{1}
0	$4 / 11$	0	0	1	$-10 / 11$	$7 / 11$	$=$	η_{2}
0	$7 / 11$	1	0	0	$-1 / 11$	$4 / 11$	$=$	y_{2}

Primal-Dual Correspondence

Primal
decision variable x_{j}
slack variable s_{i}
objective coefficients
rhs constants
basic
nonbasic
ordinary variable (≥ 0)
equality constraint
URS variable optimal

Dual
slack variable η_{j}
decision variable y_{j}
rhs constants
objective coefficients
nonbasic
basic
ordinary variable (≥ 0)
URS variable
equality constraint
optimal

If the primal problem is unbounded, the dual is infeasible. If the dual problem is unbounded, the primal is infeasible. It is also possible for both primal and dual problems to be infeasible.

