A Cutting-Stock Problem

Consider a paper mill. The paper-making machine produces "raw rolls" of width 100 inches, which are then cut by adjustable knives into "final rolls" of various widths. The mill has received orders for certain numbers of final rolls of various widths, and would like to fill these orders using as few raw rolls as possible.

There are various patterns (potentially a very large number of them) into which the raw rolls can be cut. Suppose the raw roll has width w, and the final roll widths are w_{i} for $i=1 \ldots m$. A possible pattern consists of p_{i} finals of width w_{i} for each i, where p_{i} are nonnegative integers and $\sum_{i=1}^{m} p_{i} w_{i} \leq w$. Fortunately, we will not need to actually construct all the possible patterns: the method of "delayed column generation" will generate the patterns we need as we go along.

Let's say there are n possible patterns: for each one we will have a variable x_{j}, representing the number of raw rolls cut according to pattern number j. This pattern consists of $p_{i j}$ finals of width w_{i} for $i=1 \ldots m$. Then the total number of finals of width w_{i} we obtain will be $\sum_{j=1}^{n} p_{i j} x_{j}$, and we need this to be at least the number of orders b_{i} for this type of final. We obtain a linear programming problem:

$$
\begin{aligned}
& \operatorname{minimize} \\
& \sum_{j=1}^{n} x_{j} \\
& \text { subject to } \\
& \sum_{j=1}^{n} p_{i j} x_{j} \geq b_{i} \text { for } i=1 \ldots m \\
& \quad \text { all } x_{j} \geq 0
\end{aligned}
$$

Actually, to make LINDO's "dual prices" positive rather than negative, I'll make this into a "standard primal" problem:

$$
\begin{aligned}
& \text { maximize } \sum_{j=1}^{n}-x_{j} \\
& \text { subject to } \sum_{j=1}^{n}-p_{i j} x_{j} \leq-b_{i} \text { for } i=1 \ldots m \\
& \text { all } x_{j} \geq 0
\end{aligned}
$$

We will start out with a few patterns, enough to produce a feasible solution, and solve the problem with those patterns. The dual variable values y_{i} obtained from the solution can then be used to "price out" any proposed new pattern, to see if it would enter the basis. We have

$$
\eta_{j}=\sum_{i=1}^{m} y_{i}\left(-p_{i j}\right)-(-1)=1-\sum_{i=1}^{m} y_{i} p_{i j}
$$

In order for x_{j} to be chosen to enter the basis, we need $\eta_{j}<0$, and we typically like to choose the most negative of these. So we will search for the best new pattern to enter the basis, i.e. the one that maximizes $\sum_{i=1}^{m} y_{i} p_{i j}$. If we find one we introduce it into the problem, and continue solving. When there are no patterns where this sum is greater than 1 , we must have the optimal solution.

For the pattern search, I'll use LINDO's integer linear programming abilities: we want to maximize $\sum_{i=1}^{m} y_{i} p_{i}$ subject to $\sum_{i} w_{i} p_{i} \leq 100$, all $p_{i} \geq 0$ where p_{i} are integers. The restriction to integers makes this an integer linear programming problem, not just a linear programming problem.

For example suppose we have orders for the following finals (these numbers were suggested by the class):

Final width	Quantity
$13 "$	21
$17 "$	45
$25 "$	11
$33 "$	18
$42 "$	15
$63 "$	34

We can start with the following patterns, which contain all the final widths:
Pattern 1: $33^{\prime \prime}+63^{\prime \prime}$ (total width 96 ", waste 4 ")
Pattern 2: $13^{\prime \prime}+17^{\prime \prime}+25^{\prime \prime}+42^{\prime \prime}$ (total width $97^{\prime \prime}$, waste 3 ")
Our first LINDO file (cutstock.ltx) looks like this:
max $-x 1-x 2$
st
c13) - x2 <= -21
c17) $-x 2<=-45$
c25) -x2 <= -11
c33) -x1 <= -18
c42) $-x 2<=-15$
c63) -x1 <= -34
end
LINDO's result is

OBJECTIVE FUNCTION VALUE		
1)	-79.00000	
VARIABLE	VALUE	REDUCED COST
X1	34.000000	0.000000
X2	45.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
C13)	24.000000	0.000000
C17)	0.000000	1.000000
C25)	34.000000	0.000000
C33)	16.000000	0.000000
C42)	30.000000	0.000000
C63)	0.000000	1.000000

With these two patterns, the best we can do is to use 79 raw rolls, 34 in pattern 1 and 45 in pattern 2. The dual prices are 1 for 17 -inch and 63 -inch finals, 0 for the others. Thus with these prices for those finals, we look for a pattern that will fit on the 100 -inch raw roll and have total price more than 1 .

The LINDO file (cutgen.ltx) for this pattern-search problem is

```
max 0.0 p13 + 1.0 p17 + 0.0 p25 + 0.0 p33 + 0.0 p42 + 1.0 p63
st
13 p13 + 17 p17 + 25 p25 + 33 p33 + 42 p42 + 63 p63 <= 100
end
gin 6
```

where the "gin 6" tells LINDO that the variables must be integers. LINDO's solution for this one is

OBJECTIVE FUNCTION VALUE

1)	5.000000	
VARIABLE	VALUE	REDUCED COST
P13	0.000000	0.000000
P17	5.000000	-1.000000
P25	0.000000	0.000000
P33	0.000000	0.000000
P42	0.000000	0.000000
P63	0.000000	-1.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	15.000000	0.000000

Thus we have our new pattern:
Pattern 3: $5 \times 17^{\prime \prime}$ (total width $85 "$, waste $15 "$)

We modify our problem file cutstock.ltx to include the new pattern with variable x3 having coefficient -1 in the objective and -5 in the c17 row:

```
\(\max -\mathrm{x} 1-\mathrm{x} 2-\mathrm{x} 3\)
st
c13 ) \(-x 2<=-21\)
c17 ) \(-\mathrm{x} 2-5 \mathrm{x} 3<=-45\)
c25 ) -x2 <= -11
c33 ) -x1 <= -18
c42 ) \(-x 2<=-15\)
c63 ) -x1 <= -34
end
```

In some systems we might introduce this variable and continue from the basis that was optimal for the previous problem, which might only require one more pivot. In LINDO we will just solve the system from scratch; this doesn't matter here because for such a small problem the solution takes practically no time. The LINDO solution is

OBJECTIVE FUNCTION VALUE		
1)	-59.80000	
VARIABLE	VALUE	REDUCED COST
X1	34.000000	0.000000
X2	21.000000	0.000000
X3	4.800000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
C13)	0.000000	0.800000
C17)	0.000000	0.200000
C25)	10.000000	0.000000
C33)	16.000000	0.000000
C42)	6.000000	0.000000
C63)	0.000000	1.000000

Now the number of raw rolls has decreased to 59.8 , and the dual prices have changed. We enter the new dual prices in the pattern-search file, and solve, obtaining a new pattern:

Pattern 4: $7 \times 13^{\prime \prime}$ (total width 91 ", waste 9 ")

We continue in this way, entering each new pattern into the main problem file, solving, entering the dual prices into the pattern-search file and solving:

Pattern 5: $13^{\prime \prime}+2 \times 42^{\prime \prime}$ (total width $97^{\prime \prime}$, waste 3 ")
Pattern 6: $2 \times 17^{\prime \prime}+63^{\prime \prime}$ (total width $97^{\prime \prime}$, waste 3 ")
Pattern 7: $3 \times 33^{\prime \prime}$ (total width 99", waste 1")
Pattern 8: $4 \times 25^{\prime \prime}$ (total width 100", waste 0")
Pattern 9: $5 \times 13^{\prime \prime}+2 \times 17^{\prime \prime}$ (total width 99 ", waste $1^{\prime \prime}$)
Pattern 10: $25^{\prime \prime}+33^{\prime \prime}+42^{\prime \prime}$ (total width 100 ", waste $0^{\prime \prime}$)

At this point the optimal objective value in the pattern-search problem is 1.000002; presumably the extra .000002 is roundoff error and this should really be exactly 1 , which means we are done. The optimal pattern is a new one, though, and there's no harm in trying it in the main problem:

Pattern 11: $5 \times 13^{\prime \prime}+33^{\prime \prime}($ total width $98 \prime$, waste $2 ")$

However, this new pattern doesn't enter in the solution of the main problem, and the dual prices remain unchanged. The optimal solution for the main problem is:

OBJECTIVE FUNCTION VALUE		
1)	-48.15909	
VARIABLE	VALUE	REDUCED COST
X1	14.545455	0.000000
X2	0.000000	0.022727
X3	0.000000	0.204545
X4	0.000000	0.045455
X5	5.772727	0.000000
X6	19.454546	0.000000
X7	0.000000	0.045455
X8	1.886364	0.000000
X9	3.045455	0.000000
X10	3.454545	0.000000
X11	0.000000	0.000000
ROW	SLACK	OR SURPLUS
C13)	0.000000	DUAL PRICES
C17)	0.000000	0.136364
C25)	0.000000	0.159091
C33)	0.000000	0.250000
C42)	0.000000	0.318182
C63)	0.000000	0.431818
		0.681818

Thus we need 48.15909 raw rolls, with 14.545455 in pattern 1, 5.772727 in pattern 5, 19.454546 in pattern $6,1.886364$ in pattern $8,3.045455$ in pattern 9 and 3.454545 in pattern 10 .

The fact that the solution is not in integers could be a problem for a real paper mill. However, we can ask LINDO for the best integer solution (using the patterns generated so far) by adding the command gin 11 at the end of the file. The result is a solution using 49 raw rolls (obviously the best we could hope for, since 48 is impossible without the restriction to integers): 17 in pattern 1 , 2 in pattern 2,1 in pattern 3,1 in pattern 4,6 in pattern 5,17 in pattern 6,2 in pattern 8,2 in pattern 9 and 1 in pattern 10 .

