Complementary Slackness

Consider the problem

maximize $2x_1 + 16x_2 + 2x_3$ subject to $2x_1 + x_2 - x_3 \le -3$ $-3x_1 + x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$

Check whether each of the following is an optimal solution, using complementary slackness:

#1: $x_1 = 6$, $x_2 = 0$, $x_3 = 12$ #2: $x_1 = 0$, $x_2 = 2$, $x_3 = 5$ #3: $x_1 = 0$, $x_2 = 0$, $x_3 = 6$

For what, if any, values of c_2 and c_3 would $x_1 = 0$, $x_2 = 0$, $x_3 = 6$ be an optimal solution?

Solution:

The equations of the dual problem are

$$2y_1 - 3y_2 - \eta_1 = 2$$

$$y_1 + y_2 - \eta_2 = 16$$

$$-y_1 + 2y_2 - \eta_3 = 2$$

Given values of x_1 , x_2 , x_3 , we first calculate the values of the slack variables s_1 and s_2 . Of course, the solution must be feasible to be optimal: in this case that means the decision and slack variables all ≥ 0 . Next, if it is optimal, whenever an x_j or s_i is nonzero, complementary slackness says the corresponding η_j or y_i must be 0. We see what's left of the equations of the dual when those variables are set to 0. If we can find a solution that is feasible (again all $y_i \geq 0$ and $\eta_j \geq 0$), then we conclude the alleged solution is optimal. If there is no feasible solution, it isn't.

#1: With $x_1 = 6$, $x_2 = 0$ and $x_3 = 12$, $s_1 = -3$. This is not feasible, therefore not optimal.

#2: With $x_1 = 0$, $x_2 = 2$, $x_3 = 5$, $s_1 = 0$ and $s_2 = 0$: the solution of the primal is feasible. From complementary slackness, $\eta_2 = 0$ and $\eta_3 = 0$. The equations of the dual become

$$2y_1 - 3y_2 - \eta_1 = 2$$

$$y_1 + y_2 = 16$$

$$-y_1 + 2y_2 = 2$$

From the second and third, $y_1 = 10$, $y_2 = 6$, and then from the first, $\eta_1 = 0$. All ≥ 0 , so this solution of the dual is feasible. Conclusion: yes, solution #2 is optimal.

#3: With $x_1 = 0$, $x_2 = 0$, $x_3 = 6$, $s_1 = 3$ and $s_2 = 0$: the solution of the primal is feasible. From complementary slackness, $\eta_3 = 0$ and $y_1 = 0$. The equations of the dual become

$$-3y_2 - \eta_1 = 2$$

 $+y_2 - \eta_2 = 16$
 $+2y_2 = 2$

The third equation says $y_2 = 1$, then from the first equation $\eta_1 = -5$. The solution of the dual is not feasible. Conclusion: no, solution #3 is not optimal.

In the last part, we again take $x_1 = 0$, $x_2 = 0$, $x_3 = 6$, so $s_1 = 3$ and $s_2 = 0$, but c_2 and c_3 are unspecified (c_1 is kept at 2). With complementary slackness telling us $\eta_3 = 0$ and $y_1 = 0$, the equations of the dual become

$$-3y_2 - \eta_1 = 2 +y_2 - \eta_2 = c_2 +2y_2 = c_3$$

But if $y_2 \ge 0$ and $\eta_2 \ge 0$, the left side of the first equation ≤ 0 . So this is impossible: there are no such values of c_2 and c_3 .