Complementary Slackness

Consider the problem

maximize

$2 x_{1}+16 x_{2}+2 x_{3}$
subject to

$$
\begin{gathered}
2 x_{1} \quad+x_{2}-x_{3} \leq-3 \\
-3 x_{1} \quad+x_{2}+2 x_{3} \leq 12 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Check whether each of the following is an optimal solution, using complementary slackness:
$\# 1: x_{1}=6, x_{2}=0, x_{3}=12$
$\# 2: x_{1}=0, x_{2}=2, x_{3}=5$
$\# 3: x_{1}=0, x_{2}=0, x_{3}=6$
For what, if any, values of c_{2} and c_{3} would $x_{1}=0, x_{2}=0, x_{3}=6$ be an optimal solution?

Solution:

The equations of the dual problem are

$$
\begin{aligned}
2 y_{1}-3 y_{2}-\eta_{1} & =2 \\
y_{1}+y_{2}-\eta_{2} & =16 \\
-y_{1}+2 y_{2}-\eta_{3} & =2
\end{aligned}
$$

Given values of x_{1}, x_{2}, x_{3}, we first calculate the values of the slack variables s_{1} and s_{2}. Of course, the solution must be feasible to be optimal: in this case that means the decision and slack variables all ≥ 0. Next, if it is optimal, whenever an x_{j} or s_{i} is nonzero, complementary slackness says the corresponding η_{j} or y_{i} must be 0 . We see what's left of the equations of the dual when those variables are set to 0 . If we can find a solution that is feasible (again all $y_{i} \geq 0$ and $\eta_{j} \geq 0$), then we conclude the alleged solution is optimal. If there is no feasible solution, it isn't.
\#1: With $x_{1}=6, x_{2}=0$ and $x_{3}=12, s_{1}=-3$. This is not feasible, therefore not optimal.
\#2: With $x_{1}=0, x_{2}=2, x_{3}=5, s_{1}=0$ and $s_{2}=0$: the solution of the primal is feasible. From complementary slackness, $\eta_{2}=0$ and $\eta_{3}=0$. The equations of the dual become

$$
\begin{aligned}
2 y_{1}-3 y_{2}-\eta_{1} & =2 \\
y_{1}+y_{2} & =16 \\
-y_{1}+2 y_{2} & =2
\end{aligned}
$$

From the second and third, $y_{1}=10, y_{2}=6$, and then from the first, $\eta_{1}=0$. All ≥ 0, so this solution of the dual is feasible. Conclusion: yes, solution \#2 is optimal.
\#3: With $x_{1}=0, x_{2}=0, x_{3}=6, s_{1}=3$ and $s_{2}=0$: the solution of the primal is feasible. From complementary slackness, $\eta_{3}=0$ and $y_{1}=0$. The equations of the dual become

$$
\begin{aligned}
-3 y_{2}-\eta_{1} & =2 \\
+y_{2}-\eta_{2} & =16 \\
+2 y_{2} & =2
\end{aligned}
$$

The third equation says $y_{2}=1$, then from the first equation $\eta_{1}=-5$. The solution of the dual is not feasible. Conclusion: no, solution \#3 is not optimal.

In the last part, we again take $x_{1}=0, x_{2}=0, x_{3}=6$, so $s_{1}=3$ and $s_{2}=0$, but c_{2} and c_{3} are unspecified (c_{1} is kept at 2). With complementary slackness telling us $\eta_{3}=0$ and $y_{1}=0$, the equations of the dual become

$$
\begin{aligned}
-3 y_{2}-\eta_{1} & =2 \\
+y_{2}-\eta_{2} & =c_{2} \\
+2 y_{2} & =c_{3}
\end{aligned}
$$

But if $y_{2} \geq 0$ and $\eta_{2} \geq 0$, the left side of the first equation ≤ 0. So this is impossible: there are no such values of c_{2} and c_{3}.

