
(1.1)(1.1)

(2.1)(2.1)

(1.2)(1.2)

Lesson 7: Iteration and Stability
restart;

with(plots):

Iteration
We were looking at the logistic map, with various values of the parameter .

g:= x -> r*(x - x^2);

r:= 2.5;

Iteration starts out with a particular value and repeatedly applies the function to it, so we get a
sequence

Fixed points, attractors and repellers
If the sequence has a limit, that limit must be a fixed point of : a value such that . But not
all fixed points are easy to attain this way. The ones that are, are attractors.

A fixed point of is stable if for every > 0 there is > 0 such that whenever , all
. That is, we can guarantee that always stays close to by taking the starting point

 sufficiently close to .

A fixed point that is not stable is unstable.
A stable fixed point is an attractor if as whenever is sufficiently close to .

An unstable fixed point is a repeller if there exist positive numbers
, there is some n for which . That is, whenever you start close enough

to p (but not exactly at p), eventually you move a certain distance away from p.

The main way to tell whether a fixed point is an attractor or a repeller is by looking at .

Theorem:
A fixed point of a differentiable function is an attractor if .
It is a repeller if > 1 .
If , it could be an attractor or a repeller or neither; we need more information to decide
which.

In our example:
D(g)(0);

2.5

(3.2)(3.2)

(3.1)(3.1)

(2.2)(2.2)
D(g)(0.6);

This confirms that 0 is a repeller and 0.6 is an attractor.

Cobwebs

A cobweb diagram (or staircase diagram) is a way of visualizing what's going on here. We start
with the graphs of and , which intersect at the fixed points. Then, given any and , I
plot lines joining the points ,, .
Each step of this staircase goes from a point on the diagonal vertically to on the
curve , then horizontally to on the diagonal.
I'll also plot the first point of the staircase in green and the last point in red, so you can tell which
direction it's going.
The basic building block is a function I'll call stair that takes x and produces the sequence of points

.
stair:= x -> ([x,x],[x,g(x)]);

Here's the main function staircase for making the picture.

staircase:= proc(x0, a, b, n)

 local x, count, Curves, Staircase,Dots;

 uses plots;

 Curves:= plot([x,g(x)],x=a..b, colour=[red,blue]);

 x[0]:= x0;

 for count from 1 to n-1 do

 x[count]:= g(x[count-1])

 end do;

 Staircase:= plot([seq(stair(x[j]),j=0..n-1)],colour=black);

 Dots:= plot([[x[0],x[0]]],style=point,symbol=solidcircle,

colour=green),

 plot([[x[n-1],g(x[n-1])]],style=point,symbol=

solidcircle,colour=red);

 display([Curves, Staircase,Dots]);

end proc;

(3.2)(3.2)

(2.2)(2.2)

The procedure definition starts with proc. Previously we used -> to define functions, but when
there will be more than one Maple statement in the procedure we need to use proc.
After proc come the names of the inputs to the procedure, within parentheses. These will be x0
(the starting value), a and b (the endpoints of the interval on which we'll plot the curves) and n.
The next line declares local variables x, count, Curves, Staircase: these will belong to the
procedure, and will not interfere with variables of the same name outside the procedure.
The uses statement in the next line is a replacement for with, which doesn't work well inside
procedures.
The first statement in the main body of the procedure plots the curves and for x
from a to b.
Next we start with and compute to using a for loop.

We use those values to plot the "staircase".
We use plot with style=point and symbol=solidcircle to plot the first and last points in green
and red.
Finally, we use display to combine the plots of the curves, the staircase and the dots.
The result of the procedure will be the result of its last statement (the display command).
The procedure definition is ended with end proc.

If you start near an attractor where , the staircase looks like this, with a staircase
approaching the attractor. In this case .

g:= x -> x^2 + x/2;

staircase(-0.1, -0.2, 0.2, 10);

(2.2)(2.2)

(3.2)(3.2)

x
0

Or starting on the right side of the attractor:
staircase(0.15,-0.2,0.2,10);

(2.2)(2.2)

(3.2)(3.2)

x
0

If you start near a repeller with , it looks like this, with the staircase moving away from
the repeller. In this case .

staircase(0.48, 0.1, 0.9, 10);

(2.2)(2.2)

(3.2)(3.2)

x
Or on the other side:

staircase(0.52, 0.1, 0.9, 10);

(2.2)(2.2)

(3.2)(3.2)

x
1 2 3

2

4

6

8

10

12

14

Oops, the staircase went too far away. We might have used the view option in the display command
to prevent this.

display(%, view=[0.1 .. 0.9, g(0.1) .. g(0.9)]);

(2.2)(2.2)

(3.2)(3.2)

x
In the case of an attractor with , the staircase becomes a spiral (this is where the term
"cobweb" comes in).

g:= x -> -x^2 - x/2;

staircase(-0.15, -0.2, 0.2, 10);

(3.2)(3.2)

(2.2)(2.2)

x
0

Similarly for a repeller with , it spirals outwards.
g:= x -> -x^2 - 3/2*x;

staircase(-.01,-1,1,12);

(3.2)(3.2)

(2.2)(2.2)

x
0 1

1

Back to our : we can get an idea of why every initial point in the interval is attracted to the
fixed point 0.6.

g:= x -> r*(x - x^2);

r:= 2.5;

staircase(0.95, -0.1, 1, 20);

(4.2)(4.2)

(4.3)(4.3)

(3.2)(3.2)

(4.1)(4.1)

(2.2)(2.2)

x
0 1

An attracting 2-cycle
Next we tried another value of the parameter r.

r := 3.2;

solve(g(x)=x);

D(g)(0), D(g)(0.6875);

This time both fixed points 0 and 0.6875 are repellers. So what will happen when we iterate?
 I'll start near 0.6875 and draw the cobweb diagram with 50 steps.

staircase(0.7,0.4,0.9,50);

(3.2)(3.2)

(2.2)(2.2)

x
The cobweb seems to be approaching a rectangle. The values at the two sides of the rectangle, say
 and , have the property that and . This constitutes a cycle of period 2. If you

started the iteration at one of the points of the cycle, would alternate between these forever: say
, , , , etc.

We also tried plotting the points

X[0]:= 0.7:

for count from 1 to 50 do

 X[count] := g(X[count-1])

end do:

plot([seq([i,X[i]],i=0..50)], style=point);

(3.2)(3.2)

(4.7)(4.7)

(4.4)(4.4)

(4.5)(4.5)

(4.6)(4.6)

(2.2)(2.2)

0 10 20 30 40 50

To find b and c, we could solve the two equations and for b and c:
solve({g(b)=c, g(c)=b},{b,c});

Notice that two of the solutions have b and c both equal to a fixed point, the other two have b and c
interchanged.
Another way to do it would be to solve the one equation .

s:= fsolve(g(g(x))=x);

The two fixed points and the points b and c are all fixed points of the composition of the function
with itself, which in mathematics might be written as , or in Maple input as g @ g.

b := s[2]; c:= s[4];

As fixed points of , are they attractors or repellers?
D(g@g)(b), D(g@g)(c);

(4.11)(4.11)

(3.2)(3.2)

(4.9)(4.9)

(2.2)(2.2)

(4.10)(4.10)

(4.8)(4.8)

The absolute values are less than 1, so these are attractors.
Is it a coincidence that those two derivatives are the same? Think of the chain rule (or ask Maple):

D(G @ G)(x);

eval(%, {x = B, G(x) = C});

eval(%%, {x = C, G(x) = B});

D(g@g)(b) = D(g)(b)*D(g)(c);

If is close enough to one of the points on the cycle (say), then as the even-numbered
approach and the odd-numbered ones approach .

staircase(0.55, 0.4, 0.9, 10);

x
We say that has an attracting 2-cycle. A 2-cycle () is an attractor if , a
repeller if

(5.1)(5.1)

(5.7)(5.7)

(3.2)(3.2)

(5.2)(5.2)

(5.3)(5.3)

(5.5)(5.5)

(5.6)(5.6)

(2.2)(2.2)

(5.4)(5.4)

More cycles

More generally, an n-cycle is a sequence of n different numbers , ..., such that ,
, ..., . Each member of an n-cycle is said to be a periodic point of period n.

These points will be fixed points of (with n g's), so we might find them by solving
. In Maple input, can be written as g @@ n, which in Maple output

would be
g@@n;

g

To test whether the n-cycle is an attractor or a repeller, we can check for any of the ,
which will be the product of all the in the cycle. If the absolute value of the result is < 1, it's
an attractor; if > 1, it's a repeller.
For example, try

r:= 3.5;

s:= fsolve((g@@2)(x)=x);

g(s[2]);
0.8571428572

g(s[4]);
0.4285714286

g(s[3]);
0.7142857141

So the 2-cycle is [, , while and are fixed points.

D(g@g)(s[2]);

D(g)(s[1]);

D(g)(s[3]);

3.5

So the 2-cycle and fixed points here are repellers. What will the cobweb diagram look like?
staircase(0.7, 0.3, 0.9, 50);

(3.2)(3.2)

(5.8)(5.8)

(5.9)(5.9)

(2.2)(2.2)

x

It looks like the attractor here is a 4-cycle. To find it, it's best to increase Digits, because g is a
rather complicated function.

Digits:= 15;

s:= fsolve((g@@4)(x)=x);

seq((g@@j)(s[2]),j=1..4);

So we have a 4-cycle: [].

staircase(s[2],0.3,0.9,5);

(3.2)(3.2)

(7.1)(7.1)

(6.1)(6.1)

(5.10)(5.10)

(2.2)(2.2)

x

D(g@@4)(s[2]);

And it is an attractor.

Counting with nops
It's sometimes tedious to count the number of items in an expression sequence by hand (it may be
difficult sometimes to spot the commas if the items are complicated, or there may be lots of items).
The nops command can help. It returns the number of items in a list or set (or more generally,
number of operands in any structure). Here I'll put s into a list (because nops wouldn't work on an
expression sequence) and count how many members it has.

nops([s]);
8

Chaos
One more value of r:

r := 3.8;

(3.2)(3.2)

(7.1)(7.1)

(2.2)(2.2)

staircase(0.7,0.1,1.0,200);

x

0

1

X[0]:= 0.7:

for count from 1 to 1000 do

 X[count] := g(X[count-1])

end do:

plot([seq([i,X[i]],i=0..1000)],style=point);

(3.2)(3.2)

(7.1)(7.1)

(7.3)(7.3)

(7.2)(7.2)

(2.2)(2.2)

0 200 400 600 800 1000

There's no sign of a periodic pattern. This is an example of chaos.
There are cycles for this function, but they are repellers.

Let's try finding a 5-cycle.
s:= fsolve((g@@5)(x)=x, x = 0 .. 1);

This is a strange result: Maple just found 3 solutions with Digits = 15 when I tried it on my
computer: your results may vary. There should be two fixed points, and any more solutions would
have to come in fives. The culprit may be roundoff error. I'll try increasing Digits.

Digits:= 30:

s:= fsolve((g@@5)(x)=x, x = 0 .. 1);

(7.11)(7.11)

(3.2)(3.2)

(7.4)(7.4)

(7.1)(7.1)

(7.7)(7.7)

(7.9)(7.9)

(7.10)(7.10)

(7.8)(7.8)

(7.5)(7.5)

(2.2)(2.2)

(7.6)(7.6)

nops([s]);
12

This time there are 12 solutions: two fixed points and, presumably, two 5-cycles. If I calculate the
derivative of at each of these points, it should not only tell us whether the cycles are attractors or
repellers, it should also help us to see which are the points of the 5-cycles, because the derivative
should be the same at each point on a 5-cycle.

seq(D(g@@5)(s[j]),j=1..12);

But which is which? It might help to see the index together with the value.
seq([j, D(g@@5)(s[j])],j=1..12);

All the numbers have absolute values greater than 1, so the fixed points and cycles are repellers. It
looks like and (with derivative values about 792 and -19) are the fixed points; the 5-cycles are

 (with derivative values about -9) and (with derivative values about
11). To check:

g(s[2]);
0.650021456906429198274875991424

That's approximately .

s[6] - %;

g(s[6]);
0.864475537376386643068718778198

That's approximately .

s[10] - %;

g(s[10]);

(7.15)(7.15)

(7.11)(7.11)

(3.2)(3.2)

(7.16)(7.16)

(7.12)(7.12)

(7.4)(7.4)

(7.1)(7.1)

(7.14)(7.14)

(2.2)(2.2)

(7.13)(7.13)

0.445198813712051836288170301422

That's approximately .

s[4] - %;

g(s[4]);
0.938587954084280459555477588047

That's approximately .

s[12] - %;

g(s[12]);
0.219034303820945014443841659598

And this is back to .

s[2] - %;

staircase(s[2],0.1, 1.0, 6);

(7.11)(7.11)

(3.2)(3.2)

(7.4)(7.4)

(7.1)(7.1)

(2.2)(2.2)

x

0

1

But the cycle is a repeller, so if you start close to you would move away eventually.

staircase(s[2]+0.0001, 0.1, 1.0, 16);

(7.11)(7.11)

(3.2)(3.2)

(7.4)(7.4)

(7.1)(7.1)

(2.2)(2.2)

x

0

1

Maple objects introduced in this lesson

view (option for plotting commands)
proc ... end proc
local
uses
style=point
@
@@
nops

