
> >

> >

> >
(1.2)(1.2)

> >

(1.1)(1.1)

Lesson 6: Iteration
restart;

Iteration
Newton's method is a particular case of an iteration method. In general, iteration deals with a
sequence defined by for some function . The study of iterations, also called discrete
dynamical systems, is a very active and important area of modern mathematics, related to fractals
and chaos.

Suppose this sequence converges to some value as , and is continuous at . Then we can
take limits on both sides of the equation and get . A solution of is called a fixed
point of the function .

This suggests that you might use an iteration scheme to find a fixed point of : if the sequence

converges, the limit is a fixed point. Newton's method is an example of this, with ,

because is equivalent to (assuming). Now for this scheme to work, it
must happen that if is close to the fixed point , the sequence will converge to . That may or
may not happen, depending on .

Here is a very simple function, called the logistic map, which is the most famous iteration. It
depends on a parameter .

g:= x -> r*(x - x^2);

I'll use several different values of the parameter and starting points, starting with and .
 I'll use a for loop to iterate 20 times. Note that since my function contains a floating point value and
no symbolic constants such as or functions such as , I don't have to worry about getting
complicated symbolic values (in which case I'd need to put in evalf).

r:= 2.5:

X[0]:= 0.43:

for count from 1 to 20 do

 X[count] := g(X[count-1])

end do:
Here are the last few values:

X[18], X[19], X[20];

We seem to be converging to 0.6.
I'd like to see all the values, but I don't want to type individually X[1], X[2], etc. Instead, I can use
the seq command, which makes a sequence of expressions, one for each value of an index variable.
Its syntax is
 seq(expression, index_variable =
 start_value .. end_value)

> >

(1.4)(1.4)
> >

> >

(1.3)(1.3)

where index_variable is a name and start_value and end_value are integers. It starts with
index_variable = start_value, and goes through all the integers from there to end_value one by one,
evaluating expression with that value of index_variable, and returns the expression sequence of all
the values obtained. In this case we'll get X[0], X[1], ..., X[20].

seq(X[i], i=0..20);

Now let's plot these results. As we've seen, plot can plot a list of points. In this case the points I
want are [i, X[i]]. I can use seq again to make a sequence of these points, and enclose the result in
square brackets to make a list.

plot([seq([i, X[i]], i = 0 .. 20)]);

0 5 10 15 20

It looks very much like 0.6 will be the limit of the sequence (although we haven't gone far enough to
get X[n+1] = X[n]). Is that a fixed point of g?

g(0.6) = 0.6;

There was nothing very special about . If you try other starting points, you'll see that the

> >

> >

> >

> >

(1.7)(1.7)

(1.6)(1.6)

(1.5)(1.5)

> >

sequence converges to this same fixed point as long as < 1. On the other hand, if or
 the limit is . For example:

w[0]:= 1.4:

for count from 1 to 20 do

 w[count] := g(w[count-1])

end do:

seq(w[i],i=0..20);

Those are some huge negative numbers. What's the largest floating-point number that Maple can
handle?

Maple_floats(MAX_FLOAT);

for count from 1 to 50 do

 w[count] := g(w[count-1])

end do:

seq([i,w[i]],i=21..50);

Of course those are not really , it's just that they're larger than any number Maple can handle.

The fixed points
You don't really need Maple to see that if they stay at 0, i.e. 0 is a fixed point, while if we

(2.1)(2.1)

> >

> >

(2.2)(2.2)

have and then all later too.

g(0);
0.

g(1);
0.

It turns out that these are the only ways to get to converge to 0.
By the way, how do we know 0 and 0.6 are the only fixed points?
The equation is a quadratic equation, and a quadratic equation has at most two solutions.
Both 0.6 and 0 are fixed points, but they have very different properties as far as the iteration is
concerned.
If is close to, but not exactly, 0, will be close to 0 for a while, but eventually moves away toward
either 0.6 or .
If is close to, but not exactly, 0.6, as .
Of the two fixed points, 0.6 is said to be an attractor, while 0 is a repeller.

Attractors and repellers
Here are the formal definitions:

A fixed point of is stable if for every > 0 there is > 0 such that whenever , all
. That is, we can guarantee that always stays close to by taking the starting point

 sufficiently close to .

A fixed point that is not stable is unstable.
A stable fixed point is an attractor if as whenever is sufficiently close to .

An unstable fixed point is a repeller if there exist positive numbers
, there is some n for which . That is, whenever you start close enough

to p (but not exactly at p), eventually you move a certain distance away from p.

I don't want to get bogged down in complications. For us the main classifications of fixed points are
attractors and repellers. We won't consider any examples that are neither one nor the other.

The main way to tell whether a fixed point is an attractor or a repeller is by looking at .

Theorem:
A fixed point of a differentiable function is an attractor if .
It is a repeller if > 1 .
If , it could be an attractor or a repeller or neither; we need more information to decide
which.

> >

(3.4)(3.4)

(3.3)(3.3)

(3.1)(3.1)

(3.2)(3.2)

> >

> >

> >

In our example:
D(g)(0);

2.5

D(g)(0.6);

This confirms that 0 is a repeller and 0.6 is an attractor.

In the case of Newton's method:
newt:= x -> x - f(x)/D(f)(x);

D(newt)(p);

The fixed points of newt are the solutions of . Assuming , this says that
. So this is an attractor; in fact, since the derivative is not just small but 0, it is a

superattractor.

Proof of the theorem (for those interested)
First suppose Take some number c so Consider the secant line joining

the points and . It has slope .

By the definition of the derivative, is the limit of this slope as .

Thus there is some such that if , .

Since we have .

By mathematical induction we get for all positive integers n, and in particular
as .
So p is an attractor in this case.

Now suppose . Take some number c so

There is some > 0 such that if , , and so

If N is an integer large enough that , there must be some with .
This implies that p is a repeller.

In the case , consider these examples, which all have a fixed point at 0 and derivative 1
there:

(5.1)(5.1)
> >

> >

> >

It can be shown that 0 is an attractor for , a repeller for , and neither for

Cobwebs

A cobweb diagram (or staircase diagram) is a way of visualizing what's going on here. We start
with the graphs of and . These intersect at the fixed points.

Curves:= plot([g(x),x], x=-1..1, colour=[red,blue]):

Curves;

x
0 1

1

Now, given any , we'll plot the following sequence of points: ,
This starts on the diagonal, then moves up or down to the curve , then right or left to the
diagonal, and continues in that way. The basic building block is a function I'll call stair that takes x
and produces the sequence of points .

stair:= x -> ([x,x],[x,g(x)]);

Then using seq, we can put together as many of these units as we want.
X[0]:= 0.43:

> >

(5.2)(5.2)

> >

> >

> >

for count from 1 to 5 do

 X[count] := g(X[count-1])

end do:

seq(stair(X[n]),n=0..3);

For the purpose of plotting, we make a list by putting square brackets around the result.
Staircase:= plot([%], colour = black):

Staircase;

Now combine the two plots using display.
with(plots):

display([Curves,Staircase]);

> >

> >

x
0 1

1

It would be better to "zoom in" to get a better look at this.
display([Curves,Staircase],view=[0.4 .. 0.7, 0.4 .. 0.7]);

> >

x
Here's a more elaborate function for making the picture. Since it will involve several statements
rather than just one expression, I can't use ; instead, I use proc (which stands for procedure).

The inputs to the procedure will be x0 (the starting value), a and b (the endpoints of the interval
on which we'll plot the curves) and n.
The next line declares local variables x, count, Curves, Staircase: these will belong to the
procedure, and will not interfere with variables of the same name outside the procedure.
The uses statement in the next line is a replacement for with, which doesn't work well inside
procedures.
The first statement in the main body of the procedure plots the curves and for x
from a to b.
Next we start with and compute to using a for loop.

We use those values to plot the "staircase".
We'll also put dots at the first and last points computed (green for the first, red for the last). This
can be done using plot with style=point and symbol=solidcircle.
Finally, we use display to combine the plots of the curves, the staircase and the dots.
The result of the procedure will be the result of its last statement (the display command).

(5.3)(5.3)

> >

> >

> >

The procedure definition is ended with end proc.

staircase:= proc(x0, a, b, n)

 local x, count, Curves, Staircase,Dots;

 uses plots;

 Curves:= plot([x,g(x)],x=a..b, colour=[red,blue]);

 x[0]:= x0;

 for count from 1 to n-1 do

 x[count]:= g(x[count-1])

 end do;

 Staircase:= plot([seq(stair(x[j]),j=0..n-1)],colour=black);

 Dots:= plot([[x[0],x[0]]],style=point,symbol=solidcircle,

colour=green),

 plot([[x[n-1],g(x[n-1])]],style=point,symbol=

solidcircle,colour=red);

 display([Curves, Staircase,Dots]);

end proc;

Here's the result, starting at . We see the staircase spiralling in to the fixed point at .
staircase(0.13,0.1,0.7,9);

> >

> >

x
And here it is starting near the repeller , and moving away.
staircase(0.01,0.0,0.65,10);

> >

> >

x
0

0

And here it is starting near (but slightly below) .
staircase(0.99,0.0,1.0,10);

(6.2)(6.2)

(6.3)(6.3)

> >

> >

> >

> >

> >

(6.1)(6.1)

x
0 1

0

1

By looking at these, we can get an idea of why every initial point in the interval is attracted to
the fixed point 0.6.

An attracting 2-cycle
Now let's try another value of the parameter r.

r := 3.2;

What are the fixed points, and are they attractors or repellers?
solve(g(x)=x);

D(g)(0), D(g)(0.6875);

This time both fixed points are repellers. So what will happen when we iterate?
 I'll start near 0.6875 and draw the cobweb diagram with 50 steps.

staircase(0.7,0.4,0.9,50);

> >

> >

x
The cobweb seems to be approaching a rectangle. The values at the two sides of the rectangle, say
 and , have the property that and . This constitutes a cycle of period 2. If you

started the iteration at one of the points of the cycle, would alternate between these forever: say
, , , , etc.

What if we plot the points ?

X[0]:= 0.7:

for count from 1 to 50 do

 X[count] := g(X[count-1])

end do:

plot([seq([i,X[i]],i=0..50)]);

> >

> >

0 10 20 30 40 50

It might be better to plot just the points, without the connecting lines. We can do that with the
option style=point.
plot([seq([i,X[i]],i=0..50)], style=point);

(6.4)(6.4)
> >

(6.5)(6.5)

> >

(6.6)(6.6)

> >

> >
(6.7)(6.7)

> >

0 10 20 30 40 50

How can we find b and c? We could solve the two equations and for b and c:
solve({g(b)=c, g(c)=b},{b,c});

Notice that two of the solutions have b and c both equal to a fixed point, the other two have b and c
interchanged.
Another way to do it would be to solve the one equation .
s:= fsolve(g(g(x))=x);

Again, two of the solutions are the fixed points, the other two are b and c. We can think of these all
as fixed points of the composition of the function with itself, what we might write as In Maple
input the composition sign is @, so this function could be written as g @ g.
b := s[2]; c:= s[4];

As fixed points of , are they attractors or repellers?
D(g@g)(b), D(g@g)(c);

(6.8)(6.8)

(6.10)(6.10)

> >

> >
(6.11)(6.11)

> >

(6.9)(6.9)

(6.7)(6.7)

> >

> >

The absolute values are less than 1, so these are attractors.
Is it a coincidence that those two derivatives are the same? Think of the chain rule (or ask Maple):
D(G @ G)(x);

eval(%, {x = B, G(x) = C});

eval(%%, {x = C, G(x) = B});

D(g@g)(b) = D(g)(b)*D(g)(c);

If is close enough to one of the points on the cycle (say), then as the even-numbered
approach and the odd-numbered ones approach .
We say that has an attracting 2-cycle. A 2-cycle () is an attractor if , a
repeller if

Maple objects introduced in this lesson

plot (for list of points)
plots package
with
display
isolate
expand
factor
seq
Maple_floats(MAX_FLOAT)
Float(-infinity)

