Lesson 34: Padé meets Chebyshev

```
> restart;
    with(numtheory):
```


Continued fractions for numbers

Consider any positive number x. We can represent it by a simple continued fraction with integer elements as follows. Let $b_{0}=$ floor (x), so $0 \leq x-b_{0}<1$. If that is 0 , then $x=b_{0}$. Otherwise
$x=b_{0}+\frac{1}{x_{1}}$ with $x_{1}>1$. Let $b_{1}=$ floor $\left(x_{1}\right) \geq 1$. Again, if $b_{1}=x_{1}$, then $x=b_{0}+\frac{1}{b_{1}}$, otherwise $x=b_{0}+\frac{1}{b_{1}+\frac{1}{x_{2}}}$ etc.
The continued fraction for x terminates if and only if x is a rational number. For example:
$>\operatorname{cfrac}([3,7,110,3]) ; \operatorname{CFRAC}([3,7,110,3])$;

$$
3+\frac{\frac{7291}{2320}}{7+\frac{1}{110+\frac{1}{3}}}
$$

For an irrational number, the continued fraction does not terminate. It is eventually periodic if and only if x is a quadratic irrational, i.e. an irrational root of a quadratic polynomial with integer coefficients.
$>$ cfrac (sqrt(3));

(1.3)

EYou can get as many terms as you want.
$>$ cfrac (sqrt(7)/5,15);

$$
\left.+\frac{1}{8+\frac{1}{13+\frac{1}{8+\left(\frac{1}{1+\frac{1}{2+\frac{1}{8+\frac{1}{13+\frac{1}{8+\ldots}}}}}\right.}}}\right)
$$

EFor a more compact representation, use the quotients option.
$>$ cfrac (sqrt(7)/5,30,quotients);

$$
\begin{equation*}
[0,1,1,8,13,8,1,2,1,8,13,8,1,2,1,8,13,8,1,2,1,8,13,8,1,2,1,8,13,8,1, \ldots] \tag{1.5}
\end{equation*}
$$

FFor a quadratic irrational, you can ask cfrac to give you the initial part and the repeating part.
$>$ cfrac (sqrt(7)/5, periodic, quotients);

$$
\begin{equation*}
[[0,1],[1,8,13,8,1,2]] \tag{1.6}
\end{equation*}
$$

[For non-quadratic irrationals, not much can be said. There are very few for which much is known.
$>$ cfrac ($2^{\wedge}(1 / 3)$, quotients, 20) ;

$$
\begin{equation*}
[1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2, \ldots] \tag{1.7}
\end{equation*}
$$

If you could prove that the sequence of quotients here (or for any non-quadratic algebraic number) is unbounded, or that it is bounded, you would become rather famous. The same for these:
$>$ cfrac (Pi,quotients,20);

$$
\begin{equation*}
[3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1, \ldots] \tag{1.8}
\end{equation*}
$$

$>$ cfrac (gamma, quotients,20);

$$
\begin{equation*}
[0,1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1, \ldots] \tag{1.9}
\end{equation*}
$$

Some do have known patterns:
$>$ cfrac (exp(1), quotients,20);
$[2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14, \ldots]$
$>\operatorname{cfrac}(\tan (1)$, quotients,20);
$[1,1,1,3,1,5,1,7,1,9,1,11,1,13,1,15,1,17,1,19,1, \ldots]$
The convergents of the continued fraction provide, in certain senses, the best rational approximations of an irrational number.

- For any positive integers a and b with $b \leq Q_{n},\left|x-\frac{a}{b}\right| \geq\left|x-\frac{P_{n}}{Q_{n}}\right|$
- For each $n,\left|x-\frac{P_{n}}{Q_{n}}\right|<\frac{1}{Q_{n}^{2}}$, and at least one of $\left|x-\frac{P_{n}}{Q_{n}}\right|<\frac{1}{2 Q_{n}^{2}}$ or $\left|x-\frac{P_{n+1}}{Q_{n+1}}\right|<\frac{1}{2 Q_{n+1}^{2}}$
- Any rational
- $\quad \frac{a}{b}$ in lowest terms with $\left|x-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ is a convergent of x.

So e.g. for π we get the following good approximations:
> S:= [seq(nthconver (cfrac (Pi,5),n),n=1..5)];

$$
\begin{equation*}
S:=\left[\frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \frac{103993}{33102}, \frac{104348}{33215}\right] \tag{1.12}
\end{equation*}
$$

> Digits:= 15; seq(evalf(abs(Pi - S[n])), $\mathrm{n}=1 . .5$); Digits := 15
$0.00126448926735,0.00008321962753,2.667641910^{-7}, 5.778910^{-10}, 3.316310^{-10}$

Continued fractions for analytic functions

Coonsider again our function f0.
[How do these come about? In a way it's rather analogous to what we had for numbers.
$>$ f0(0);

$$
\begin{equation*}
\frac{1}{4} \pi \tag{2.4}
\end{equation*}
$$

$[>\mathrm{f1}:=$ solve $(\mathrm{f} 0(\mathrm{x})=\mathrm{Pi} / 4+\mathrm{x} / \mathrm{f} 1, \mathrm{f} 1)$; series $(\mathrm{f} 1, \mathrm{x})$;

$$
f 1:=\frac{4 x}{4 \arctan (2 x+1)-\pi}
$$

$$
\begin{equation*}
1+x+\frac{1}{3} x^{2}-\frac{1}{3} x^{3}+\frac{11}{45} x^{4}+\mathrm{O}\left(x^{5}\right) \tag{2.5}
\end{equation*}
$$

[> $\mathrm{f} 2:=\operatorname{solve}(f 1=1+x / f 2, f 2)$; series $(f 2, x)$;

$$
\begin{align*}
& >\mathrm{f0}:=\mathrm{x}->\arctan (2 * \mathrm{x}+1) \text {; } \\
& f 0:=x \rightarrow \arctan (2 x+1) \tag{2.1}\\
& >\mathrm{Q}:=\operatorname{cfrac}(\mathrm{fO}(\mathrm{x}), \mathrm{x}, 21 \text {, quotients) ; } \\
& Q:=\left[\frac{1}{4} \pi,[x, 1],[x, 1],[-x, 3],[4 x, 1],[-x, 5],[6 x, 1],[-3 x, 14],[17 x, 1],[-32 x \text {, }\right. \tag{2.2}\\
& \text { 153], [} 185 x, 1 \text {], }[-85 x, 407],[492 x, 1],[-111 x, 533],[644 x, 1],[-287 x, 1380] \text {, } \\
& \text { [1667x, 1], [-5888 x, 28339], [34227 x, 1], [-15003 x, 72257], [87260 x, 1], [} \\
& \text { - } 19015 x, 91623 \text {], ...] } \\
& >\operatorname{CFRAC}(Q[1 . .5]) \text {; } \\
& \frac{1}{4} \pi+\frac{x}{1+\frac{x}{1-\frac{x}{3+\frac{4 x}{1}}}} \tag{2.3}
\end{align*}
$$

$$
\begin{align*}
& f 2:=-\frac{x(4 \arctan (2 x+1)-\pi)}{-4 x+4 \arctan (2 x+1)-\pi} \\
& 1-\frac{1}{3} x+\frac{4}{9} x^{2}-\frac{68}{135} x^{3}+\mathrm{O}\left(x^{4}\right) \tag{2.6}\\
& \text { ff: = solve(f2 = } 1+x / f 3, f 3 \text {); series }(f 3, \mathrm{x}) \text {; } \\
& f 3:=-\frac{x(-4 x+4 \arctan (2 x+1)-\pi)}{4 x \arctan (2 x+1)-x \pi-4 x+4 \arctan (2 x+1)-\pi} \\
& -3-4 x-\frac{4}{5} x^{2}+\mathrm{O}\left(x^{3}\right) \tag{2.7}\\
& >\mathrm{f} 4:=\operatorname{solve}(\mathrm{f} 3=-3+\mathrm{x} / \mathrm{f} 4, \mathrm{f} 4) \text {; series }(\mathrm{f} 4, \mathrm{x}) \text {; } \\
& f 4:=\frac{x(4 x \arctan (2 x+1)-x \pi-4 x+4 \arctan (2 x+1)-\pi)}{4 x^{2}+8 x \arctan (2 x+1)-2 x \pi-12 x+12 \arctan (2 x+1)-3 \pi} \\
& -\frac{1}{4}+\frac{1}{20} x+\mathrm{O}\left(x^{2}\right) \tag{2.8}\\
& \text { And thus } \\
& f 0(x)=\frac{\pi}{4}+\frac{x}{f 1}=\frac{\pi}{4}+\frac{x}{1+\frac{x}{f 2}}=\frac{\pi}{4}+\frac{x}{1+\frac{x}{1+\frac{x}{f 3}}}=\frac{\pi}{4}+\frac{x}{1+\frac{x}{1+\frac{x}{-3+\frac{x}{f 4}}}} \\
& =\frac{\pi}{4}+\frac{x}{1+\frac{x}{1+\frac{x}{-3+\frac{x}{-\frac{1}{4}+\frac{x}{\ldots}}}}} \\
& \text { =which Maple prefers to write as } \\
& >\operatorname{CFRAC}([(1 / 4) * \operatorname{Pi},[x, 1],[x, 1],[-x, 3],[4 * x, 1], ` . . .]) \text {; } \\
& \frac{1}{4} \pi+\frac{x}{1+\frac{x}{1-\frac{x}{3+\frac{4 x}{1+\ldots}}}} \tag{2.9}\\
& >\text { for } n n \text { from } 1 \text { to } 20 \text { do } F[n n]:=n t h \operatorname{conver}(Q, n n) \text { end do; } \\
& F_{1}:=x+\frac{1}{4} \pi \\
& F_{2}:=\frac{\frac{1}{4} \pi x+x+\frac{1}{4} \pi}{x+1} \\
& F_{3}:=\frac{-x^{2}+\frac{1}{2} \pi x+3 x+\frac{3}{4} \pi}{2 x+3}
\end{align*}
$$

$$
\begin{aligned}
& F_{4}:=\frac{\pi x^{2}+3 x^{2}+\frac{3}{2} \pi x+3 x+\frac{3}{4} \pi}{4 x^{2}+6 x+3} \\
& F_{5}:=\frac{x^{3}+\frac{9}{2} \pi x^{2}+12 x^{2}+\frac{27}{4} \pi x+15 x+\frac{15}{4} \pi}{18 x^{2}+27 x+15} \\
& F_{6}:=\frac{6 \pi x^{3}+19 x^{3}+\frac{27}{2} \pi x^{2}+30 x^{2}+\frac{45}{4} \pi x+15 x+\frac{15}{4} \pi}{24 x^{3}+54 x^{2}+45 x+15} \\
& F_{7}:=\frac{-3 x^{4}+\frac{141}{2} \pi x^{3}+230 x^{3}+\frac{675}{4} \pi x^{2}+375 x^{2}+\frac{585}{4} \pi x+210 x+\frac{105}{2} \pi}{282 x^{3}+675 x^{2}+585 x+210} \\
& F_{8}:= \\
& \frac{1}{408 x^{4}+1200 x^{3}+1440 x^{2}+840 x+210}\left(320 x^{4}+102 \pi x^{4}+300 \pi x^{3}+740 x^{3}\right. \\
& \left.+360 \pi x^{2}+630 x^{2}+210 x+210 \pi x+\frac{105}{2} \pi\right) \\
& F_{9}:=\left(96 x^{5}+41600 x^{4}+13350 \pi x^{4}+101220 x^{3}+40500 \pi x^{3}+89670 x^{2}+50400 \pi x^{2}\right. \\
& \left.+30450 \pi x+32130 x+\frac{16065}{2} \pi\right) /\left(53400 x^{4}+162000 x^{3}+201600 x^{2}\right. \\
& +121800 x+32130) \\
& F_{10}:=\left(59296 x^{5}+18870 \pi x^{5}+178500 x^{4}+68850 \pi x^{4}+217770 x^{3}+107100 \pi x^{3}\right. \\
& \left.+128520 x^{2}+89250 \pi x^{2}+\frac{80325}{2} \pi x+32130 x+\frac{16065}{2} \pi\right) /\left(75480 x^{5}\right. \\
& \left.+275400 x^{4}+428400 x^{3}+357000 x^{2}+160650 x+32130\right) \\
& F_{11}:=\left(-8160 x^{6}+20597472 x^{5}+6545340 \pi x^{5}+64045800 x^{4}+24579450 \pi x^{4}\right. \\
& +39305700 \pi x^{3}+81010440 x^{3}+49576590 x^{2}+33736500 \pi x^{2}+13076910 x \\
& \left.+15663375 \pi x+\frac{6538455}{2} \pi\right) /\left(26181360 x^{5}+98317800 x^{4}+157222800 x^{3}\right. \\
& \left.+134946000 x^{2}+62653500 x+13076910\right) \\
& F_{12}:=\left(9284040 \pi x^{6}+29165472 x^{6}+40419540 \pi x^{5}+108419472 x^{5}+171188640 x^{4}\right. \\
& +77272650 \pi x^{4}+144242280 x^{3}+83216700 \pi x^{3}+65384550 x^{2}+53496450 \pi x^{2} \\
& \left.+19615365 \pi x+13076910 x+\frac{6538455}{2} \pi\right) /\left(37136160 x^{6}+161678160 x^{5}\right. \\
& \left.+309090600 x^{4}+332866800 x^{3}+213985800 x^{2}+78461460 x+13076910\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
F_{13}: & =\left(905760 x^{7}+4221860580 \pi x^{6}+13258877184 x^{6}+50678494776 x^{5}\right. \\
& +18815295870 \pi x^{5}+82251386280 x^{4}+36823389750 \pi x^{4}+40609749600 \pi x^{3} \\
& +71378133750 x^{3}+33398428140 x^{2}+26774973225 \pi x^{2}+6969993030 x \\
& \left.+\frac{20184210585}{2} \pi x+\frac{3484996515}{2} \pi\right) /\left(16887442320 x^{6}+75261183480 x^{5}\right. \\
& +147293559000 x^{4}+162438998400 x^{3}+107099892900 x^{2}+40368421170 x \\
& +6969993030) \\
F_{14} & :=\left(5978921760 \pi x^{7}+18783469728 x^{7}+30252044340 \pi x^{6}+83081017152 x^{6}\right. \\
& +160923978936 x^{5}+68578882470 \pi x^{5}+175143414600 x^{4}+90414944550 \pi x^{4} \\
& +113485783950 x^{3}+75061463400 \pi x^{3}+41819958180 x^{2}+39407268285 \pi x^{2} \\
& \left.+\frac{24394975605}{2} \pi x+6969993030 x+\frac{3484996515}{2} \pi\right) /\left(23915687040 x^{7}\right. \\
& +121008177360 x^{6}+274315529880 x^{5}+361659778200 x^{4}+300245853600 x^{3} \\
& \left.+157629073140 x^{2}+48789951210 x+6969993030\right) \\
F_{15} & :=\left(-259953120 x^{8}+7039238042340 \pi x^{7}+22115890472832 x^{7}\right. \\
& +36347831274510 \pi x^{6}+100107075669048 x^{6}+198468943069320 x^{5} \\
F_{16} & :=\left(31311784083456 x^{8}+9966862573920 \pi x^{8}+57469395957120 \pi x^{7}\right. \\
& +160611946065216 x^{7}+150668828352000 \pi x^{6}+368367348555360 x^{6} \\
& +490433015207520 x^{5}+234792257515200 \pi x^{5}+410393189606400 x^{4} \\
& +238245084831600 \pi x^{4}+161592318407520 \pi x^{3}+216738903260880 x^{3} \\
& +67330132669800 x^{2}+71818808181120 \pi x^{2}+9618590381400 x \\
& +19237180762800 \pi x+2404647595350 \pi) /\left(39867450295680 x^{8}\right. \\
& +84070544950350 \pi x^{5}+221212387761750 x^{4}+113117625343800 \pi x^{4} \\
& +147025032974820 x^{3}+95900402176425 \pi x^{3}+55711154288790 x^{2} \\
& +2404647595350 \pi) /\left(28156952169360 x^{7}+145391325098040 x^{6}\right. \\
& +336282179801400 x^{5}+452470501375200 x^{4}+383601608705700 x^{3} \\
& \left.+205942384057410 x^{2}+65329744670190 x+9618590381400\right) \\
& +119028705 \\
2
\end{array} x^{2}+9618590381400 x+\frac{32664872335095}{2} x\right)
$$

$$
\begin{aligned}
&+229877583828480 x^{7}+602675313408000 x^{6}+939169030060800 x^{5} \\
&+952980339326400 x^{4}+646369273630080 x^{3}+287275232724480 x^{2} \\
&+76948723051200 x+9618590381400) \\
& F_{17}:=\left(1530603970560 x^{9}+241003884889020960 \pi x^{8}+757126286037024768 x^{8}\right. \\
&+1414609181484508800 \pi x^{7}+3962151478002801600 x^{7} \\
&+3774796557999667200 \pi x^{6}+9270577153918190880 x^{6} \\
&+5987741207698958400 \pi x^{5}+12595882678824725280 x^{5} \\
&+10764449206100029440 x^{4}+6186965891027922000 \pi x^{4} \\
&+4276217522018201760 \pi x^{3}+5814136503057682800 x^{3} \\
&+1939107820890240000 \pi x^{2}+1851434369563779000 x^{2} \\
&+531003900595568400 \pi x+272581232818494600 x+68145308204623650 \pi) / \\
&+964015539556083840 x^{8}+5658436725938035200 x^{7}+15099186231998668800 x^{6} \\
&+23950964830795833600 x^{5}+24747863564111688000 x^{4} \\
&+17104870088072807040 x^{3}+7756431283560960000 x^{2}+2124015602382273600 x \\
&+272581232818494600) \\
& F_{18}=\left(1071709964428419072 x^{9}+341135805317559840 \pi x^{9}+6254391364011172800 x^{8}\right. \\
&+2208008900313367200 \pi x^{8}+6571551169488412800 \pi x^{7} \\
&+16570260717007108320 x^{7}+11811031155972417600 \pi x^{6} \\
&+26056627965425977920 x^{6}+14142155726230131600 \pi x^{5} \\
&+26642410379482978080 x^{5}+18182771648010169200 x^{4} \\
&+11717786173162109040 \pi x^{4}+8118644953946927400 x^{3} \\
&+6734359869633396000 \pi x^{3}+2180649862547956800 x^{2} \\
&+2597538806858595600 \pi x^{2}+613307773841612850 \pi x+272581232818494600 x \\
&+68145308204623650 \pi) /\left(1364543221270239360 x^{9}+8832035601253468800 x^{8}\right. \\
&+26286204677953651200 x^{7}+47244124623889670400 x^{6} \\
&+56568622904920526400 x^{5}+46871144692648436160 x^{4} \\
&+26937439478533584000 x^{3}+10390155227434382400 x^{2} \\
&+2453231095366451400 x+272581232818494600) \\
&+-22963651370311680 x^{10}+66079381230290794291200 x^{9} \\
&+21033668599840939896000 \pi x^{9}+138320717560130888244000 \pi x^{8} \\
&+392479398164879280604800 x^{8}+1058230859588548008105600 x^{7} \\
&+418207300094055236688000 \pi x^{7}+763595596897991505648000 \pi x^{6} \\
&+1763601615351182805438240 x^{5}+782535984031335431898000 \pi x^{4} \\
&++179067377533189600 x^{6}+929046697047118705255200 \pi x^{5} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& +1226603041014896380836000 x^{4}+457512206463284024052000 \pi x^{3} \\
& +558851858590777756804800 x^{3}+179723710046546229564000 \pi x^{2} \\
& +153477680882151840013800 x^{2}+19695902139765964312200 x \\
& +43293395755479451081500 \pi x+4923975534941491078050 \pi) / \\
& \left(84134674399363759584000 x^{9}+553282870240523552976000 x^{8}\right. \\
& +1672829200376220946752000 x^{7}+3054382387591966022592000 x^{6} \\
& +3716186788188474821020800 x^{5}+3130143936125341727592000 x^{4} \\
& +1830048825853136096208000 x^{3}+718894840186184918256000 x^{2} \\
& +173173583021917804326000 x+19695902139765964312200) \\
F_{20} & =\left(93517388532372477911040 x^{10}+29767510372010271638400 \pi x^{10}\right. \\
& +611837571653905732819200 x^{9}+213704525241185361768000 \pi x^{9} \\
& +711754272609689789172000 \pi x^{8}+1838400348330919552608000 x^{8} \\
& +1448837878764208396464000 \pi x^{7}+3331932215851618841404800 x^{7} \\
& +1997640105568832789064000 \pi x^{6}+4018614468781062200450400 x^{6} \\
& +1951540718517244340085600 \pi x^{5}+3350230269356550169830240 x^{5} \\
& +1370176226255545566858000 \pi x^{4}+1935035999696305265760000 x^{4} \\
& +749135365596712467172800 x^{3}+684173442749765076108000 \pi x^{3} \\
& +233240946391965366855000 \pi x^{2}+177263119257893678809800 x^{2} \\
& +19695902139765964312200 x+49239755349414910780500 \pi x \\
& +4923975534941491078050 \pi) /\left(119070041488041086553600 x^{10}\right. \\
& +854818100964741447072000 x^{9}+2847017090438759156688000 x^{8} \\
& +5795351515056833585856000 x^{7}+7990560422275331156256000 x^{6} \\
& +7806162874068977360342400 x^{5}+5480704905022182267432000 x^{4} \\
& +2736693770999060304432000 x^{3}+932963785567861467420000 x^{2} \\
& +196959021397659643122000 x+19695902139765964312200)
\end{aligned}
$$

In many cases the continued fraction converges on a much larger interval than the Maclaurin series, but it's not always the case.
> with(plots):
display ([seq] (plot (F[n]-f0 (x), x=-2. .20, -0.01..0.01, title= ('n'=n)), n=1..20), insequence=true, axes=box);

In this case it looks like it converges for $x>-1$, but at $x=-1$ something strange happens (it's really rather a coincidence that $x=-1$ was the left endpoint of the interval I arbitrarily chose). The denominators of every fourth convergent seems to be 0 there. I don't know why.

$$
\begin{align*}
& >\text { seq (eval (denom }(F[n]), x=-1), n=1 \ldots 20) ; \\
& 4,0,4,4,24,0,72,36,6660,0,11100,100,64400,0,450800,4900,167712300,0, \tag{2.11}\\
& \quad 301882140,79380
\end{align*}
$$

The convergents are a special case of Padé approximants.
> F[4];

$$
\begin{equation*}
\frac{\pi x^{2}+3 x^{2}+\frac{3}{2} \pi x+3 x+\frac{3}{4} \pi}{4 x^{2}+6 x+3} \tag{2.12}
\end{equation*}
$$

[> with (numapprox):
$>$ pade (f0(x),x=0,[2,2]);

$$
\begin{equation*}
\frac{3}{4} \frac{\pi+(4+2 \pi) x+\left(4+\frac{4}{3} \pi\right) x^{2}}{4 x^{2}+6 x+3} \tag{2.13}
\end{equation*}
$$

$>$ normal (\%-F[4]);

$$
\begin{equation*}
=\frac{1}{12} \frac{15 \pi+(60+27 \pi) x+(48+18 \pi) x^{2}+4 x^{3}}{6 x^{2}+9 x+5} \tag{2.15}
\end{equation*}
$$

[$>$ normal (lhs (\%)-rhs (\%));
0
$[>\mathrm{F}[6]=\operatorname{pade}(\mathrm{f} 0(\mathrm{x}), \mathrm{x}=0,[3,3])$;
$\frac{6 \pi x^{3}+19 x^{3}+\frac{27}{2} \pi x^{2}+30 x^{2}+\frac{45}{4} \pi x+15 x+\frac{15}{4} \pi}{24 x^{3}+54 x^{2}+45 x+15}$

$$
\begin{equation*}
=\frac{5}{4} \frac{\pi+(4+3 \pi) x+\left(8+\frac{18}{5} \pi\right) x^{2}+\left(\frac{76}{15}+\frac{8}{5} \pi\right) x^{3}}{8 x^{3}+18 x^{2}+15 x+5} \tag{2.17}
\end{equation*}
$$

$>$ normal (lhs (\%) -rhs (\%));
0
(2.18)

Padé meets Chebyshev

Much the same idea that takes Taylor series to Padé approximants can be used with Chebyshev series, giving us a Chebyshev-Padé approximant. Given the Chebyshev series for a function $f(x)$ on the interval $[-1,1]$, we look for a rational function $\frac{p(x)}{q(x)}$ with p and q of given degrees m and n so that the quotient agrees with the Chebyshev series for as many terms as possible. This can be done with p and q expressed in terms of Chebyshev polynomials. We'll take a partial sum $f_{r}(x)=\sum_{j=0}^{r} c_{j} T(j, x)$ of the Chebyshev series for $f(x)$, and we'll want to determine coefficients a_{j} and b_{j} so $p(x)=\sum_{j=0}^{m} a_{j} T(j, x)$ and $q(x)=\sum_{j=0}^{n} b_{j} T(j, x)$. I'll "normalize" this so $b_{0}=1$.
Thus we have $m+n+1$ unknowns, so in general we want $m+n+1$ equations: the coefficients of $T(j, x)$ in $\frac{p(x)}{q(x)}-f_{r}(x)$ should be 0 for j from 0 to $m+n$.
[This is what the chebpade command will do, if instead of an integer n you give it a list [m, n].
[For example, I'll try the case $m=8, n=8$ for $f_{0}(x)$ on [-1,1].
[$>$ Digits: $=20$:
$>$ chebpade (f0 (x), x=-1..1, 8,8$]$);
(1.2150910857455277020 $T(0, x)+2.1504323442622673679 T(1, x)$

$$
+1.4817400805231678971 T(2, x)+0.79195153209656138406 T(3, x)
$$

$$
\begin{aligned}
& +0.32280529047219130940 T(4, x)+0.097736838340783278521 T(5, x) \\
& +0.020806016823725443870 T(6, x)+0.0028022649006158375805 T(7, x) \\
& +0.00018045093239485958314 T(8, x)) /(T(0, x)+1.7501206386219160280 T(1 \text {, } \\
& x)+1.1813904164852913359 T(2, x)+0.61171122002050111301 T(3, x) \\
& +0.24087544231736790398 T(4, x)+0.070125135833745748472 T(5, x) \\
& +0.014360853134940139064 T(6, x)+0.0018561537183627620354 T(7, x) \\
& +0.00011495745645166114404 T(8, x)) \\
& \text { > ChebPadeApp:= eval (\%, T=orthopoly[T]); } \\
& \text { ChebPadeApp }:=\left(0.24364608537218874524 x+0.74977171025922780196 x^{2}\right. \\
& +1.3699961960050668703 x^{3}+1.2499357445835586473 x^{5} \\
& +0.61959709966613015056 x^{6}+0.17934495363941360515 x^{7} \\
& +1.6126256654218867027 x^{4}+0.023097719346542026642 x^{8} \\
& +0.035530729803220530013) /(0.25261958170060209711 x \\
& +0.69059401225410878655 x^{2}+1.1482867716354041566 x^{3} \\
& +0.91411295688330262764 x^{5}+0.43011819146645919718 x^{6} \\
& +0.11879383797521677027 x^{7}+1.2560757810940823398 x^{4} \\
& \left.+0.014714554425812626437 x^{8}+0.045239130153588090160\right)
\end{aligned}
$$

The terms of the Chebyshev series of ChebPadeApp and $f_{0}(x)$ should agree up to the coefficient of $T(16, x)$.

$$
\begin{aligned}
& >\text { chebpade (ChebPadeApp, } \mathrm{x}=-1 \ldots 1,18) \text {-chebpade }(\mathrm{f} 0, \mathbf{x}=-1 \ldots 1,18) ; \\
& -6.8710^{-18} T(0, x)+1.1910^{-17} T(1, x)-8.3910^{-18} T(2, x)+4.90710^{-18} T(3, x) \\
& \quad-2.19310^{-18} T(4, x)+3.6710^{-19} T(5, x)+4.79610^{-19} T(6, x)-5.09710^{-19} T(7, x) \\
& \quad+1.90210^{-19} T(8, x)+5.8710^{-20} T(9, x)-1.074510^{-19} T(10, x)+4.61410^{-20} T(11, \\
& x) \\
& \quad+9.8310^{-21} T(12, x)-2.15810^{-20} T(13, x)+8.870610^{-21} T(14, x) \\
& \quad+2.24210^{-21} T(15, x)-3.79410^{-21} T(16, x)-9.28632145604438010^{-10} T(17, x) \\
& \quad+4.058233624340855210^{-9} T(18, x)
\end{aligned}
$$

To see how well that approximates f_{0} :
$>$ plot (ChebPadeApp-f0 (x), x=-1..1);

$=$ For comparison, here was the Chebyshev approximation for degree 16.
$>$ ChebApp:= eval (chebpade (f0, $\mathbf{x}=-1.1,16$), T=orthopoly[T]);
ChebApp $:=1.0000485515945650539 x-0.99876822575371845519 x^{2}$
$+0.66287353028368720111 x^{3}-0.71860959386426494656 x^{5}$
$+1.6135571716378433150 x^{6}-1.8987869235996306835 x^{7}$
$+5.3533094340438756792 x^{9}-2.1110086738601142540 x^{10}$
$-0.03097264020437684917 x^{4}-1.0702457755879091488 x^{8}$
$+4.1362533555371943228 x^{12}-5.8072197456164019734 x^{11}$
$+3.0948964712226572853 x^{13}-2.7785539083838447003 x^{14}$
$-0.66929394203855460141 x^{15}+0.68617861519849349120 x^{16}$
$+0.78539035222619927696$
[$>$ plot (ChebApp-f0 (x) , x=-1 . .1);

[Actually, we wanted an error no more than 10^{-8} so we're not quite there. Try $m=9, n=9$
$>$ chebpade ($\mathrm{f} 0(\mathrm{x}), \mathrm{x}=-1 . .1,[9,9]$);
(1.2204904146594178764 $T(0, x)+2.1867347687984828909 T(1, x)$
$+1.5676536778231649570 T(2, x)+0.89619188118190663767 T(3, x)$
$+0.40421409894216092858 T(4, x)+0.14139700264338726277 T(5, x)$
$+0.037152466295687332144 T(6, x)+0.0069393607830995464687 T(7, x)$
$+0.00082506897523598650488 T(8, x)+0.000047226845763143514642 T(9, x)) /$
$(T(0, x)+1.7784202742264716937 T(1, x)+1.2541098728393919652 T(2, x)$
$+0.69915932126053711718 T(3, x)+0.30627513053055806266 T(4, x)$
$+0.10365855236204522728 T(5, x)+0.026323861808408856132 T(6, x)$
$+0.0047443761428804202794 T(7, x)+0.00054450546215046541514 T(8, x)$
$+0.000030057454735265050515 T(9, x))$
$>$ ChebPadeApp:= eval (\%,T=orthopoly[T]);
ChebPadeApp $:=\left(0.15699365459987075810 x+0.54393675022386289583 x^{2}\right.$
$+1.1397644542218786757 x^{3}+1.5055456319567249981 x^{5}$
$+0.97766126380158208335 x^{6}+0.41691642695880030957 x^{7}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
+0.012090072515364739748 x^{9}+1.5824054453820533265 x^{4} \\
\\
\left.+0.10560882883020627262 x^{8}+0.020723438457962502341\right) / \\
\\
\left(0.16629495634754092209 x+0.51442403919686394620 x^{2}\right. \\
\\
+0.98554440723431565264 x^{3}+1.1401515302357510670 x^{5} \\
\\
+0.70297017955856424994 x^{6}+0.28632697921683422878 x^{7} \\
\\
+0.0076947084122278529318 x^{9}+1.2737765513849138734 x^{4} \\
\\
\\
\left.+0.069696699155259573138 x^{8}+0.026385901344907706743\right)
\end{array} \\
& \gg \text { plot(ChebPadeApp-£0(x),x=-1..1);}
\end{aligned}
$$

Maple commands introduced in this lesson:

quotients option for cfrac periodic option for cfrac
chebpade(..., ..., [m,n]) in numapprox package

