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Lesson 34: Padé meets Chebyshev 
restart; 

with(numtheory):

Continued fractions for numbers
Consider any positive number x.  We can represent it by a simple continued fraction with integer 
elements as follows.  Let , so .  If that is 0, then .  Otherwise

 with .  Let .  Again, if , then , otherwise 

 etc.

The continued fraction for x terminates if and only if x is a rational number.  For example:
cfrac([3,7,110,3]); CFRAC([3,7,110,3]);

7291
2320

For an irrational number, the continued fraction does not terminate.  It is eventually periodic if and 
only if x is a quadratic irrational, i.e. an irrational root of a quadratic polynomial with integer 
coefficients.

cfrac(sqrt(3));

cfrac(sqrt(7)/5);
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You can get as many terms as you want.
cfrac(sqrt(7)/5,15);
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For a more compact representation, use the quotients option.
cfrac(sqrt(7)/5,30,quotients);

For a quadratic irrational, you can ask cfrac to give you the initial part and the repeating part.
cfrac(sqrt(7)/5,periodic,quotients);

For non-quadratic irrationals, not much can be said.  There are very few for which much is known.
cfrac(2^(1/3),quotients,20);

If you could prove that the sequence of quotients here (or for any non-quadratic algebraic number) is
unbounded, or that it is bounded, you would become rather famous.  The same for these:

cfrac(Pi,quotients,20);

cfrac(gamma,quotients,20);

Some do have known patterns:
cfrac(exp(1),quotients,20);

cfrac(tan(1),quotients,20);

The convergents of the continued fraction provide, in certain senses, the best rational 
approximations of an irrational number.  

For any positive integers a and b with ,   

For each n, , and at least one of  or 

Any rational 
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 in lowest terms with  is a convergent of .

So e.g. for  we get the following good approximations:
S:= [seq(nthconver(cfrac(Pi,5),n),n=1..5)];

Digits:= 15; seq(evalf(abs(Pi - S[n])),n=1..5);

seq(evalf(abs(Pi-S[n])*denom(S[n])^2), n=1..5);

Continued fractions for analytic functions

Consider again our function f0.
f0:= x -> arctan(2*x+1);

Q:=cfrac(f0(x),x,21,quotients);

CFRAC(Q[1..5]);

How do these come about?  In a way it's rather analogous to what we had for numbers.
f0(0);

f1:= solve(f0(x) = Pi/4 + x/f1,f1); series(f1, x);

f2:= solve(f1 = 1 + x/f2, f2); series(f2,x);
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f3:= solve(f2 = 1 + x/f3, f3); series(f3,x);

f4:= solve(f3 = -3 + x/f4, f4); series(f4,x);

And thus

 

which Maple prefers to write as
CFRAC([(1/4)*Pi, [x, 1], [x, 1], [-x, 3], [4*x, 1],`...`]);

for nn from 1 to 20 do F[nn]:= nthconver(Q,nn) end do;
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In many cases the continued fraction converges on a much larger interval than the Maclaurin series, 
but it's not always the case.

with(plots):

display([seq](plot(F[n]-f0(x),x=-2..20,-0.01..0.01,title=

('n'=n)),n=1..20),insequence=true,axes=box);
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In this case it looks like it converges for , but at  something strange happens (it's really 
rather a coincidence that  was the left endpoint of the interval I arbitrarily chose).  The 
denominators of every fourth convergent seems to be 0 there.  I don't know why. 

seq(eval(denom(F[n]),x=-1),n=1..20);

The convergents are a special case of Padé approximants.
F[4];

with(numapprox):

pade(f0(x),x=0,[2,2]);

normal(%-F[4]);
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0

F[5]=pade(f0(x),x=0,[3,2]);

normal(lhs(%)-rhs(%));
0

F[6] = pade(f0(x),x=0,[3,3]);

normal(lhs(%)-rhs(%));
0

Padé meets Chebyshev
Much the same idea that takes Taylor series to Padé approximants can be used with Chebyshev 
series, giving us a Chebyshev-Padé approximant.  Given the Chebyshev series for a function  

on the interval [-1,1], we look for a rational function  with  and  of given degrees m and n so

that the quotient agrees with the Chebyshev series for as many terms as possible.  This can be done 
with  and  expressed in terms of Chebyshev polynomials.  We'll take a partial sum 

 of the Chebyshev series for , and we'll want to determine coefficients  

and  so  and .  I'll "normalize" this so .  

Thus we have  unknowns, so in general we want  equations: the coefficients of 

 in  should be 0 for j from 0 to .

This is what the chebpade command will do, if instead of an integer n you give it a list .

For example, I'll try the case ,  for  on [-1,1].

Digits:= 20:

chebpade(f0(x),x=-1..1,[8,8]); 
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ChebPadeApp:= eval(%,T=orthopoly[T]);

The terms of the Chebyshev series of ChebPadeApp and  should agree up to the coefficient of 
.

chebpade(ChebPadeApp,x=-1..1,18)-chebpade(f0,x=-1..1,18);

To see how well that approximates :

plot(ChebPadeApp-f0(x),x=-1..1);
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For comparison, here was the Chebyshev approximation for degree 16.
ChebApp:= eval(chebpade(f0,x=-1..1,16),T=orthopoly[T]);

plot(ChebApp-f0(x),x=-1..1);
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Actually, we wanted an error no more than  so we're not quite there.  Try , 
chebpade(f0(x),x=-1..1,[9,9]);

ChebPadeApp:= eval(%,T=orthopoly[T]);
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plot(ChebPadeApp-f0(x),x=-1..1);

x
0 1

Maple commands introduced in this lesson:
quotients option for cfrac
periodic option for cfrac 
chebpade(..., ..., [m,n]) in numapprox package
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