
Lesson 33: Chebyshev and Padé
restart;

Chebyshev approximations in Maple
Maple has commands to produce Chebyshev series approximations: chebpade and chebyshev in the
numapprox package.
We can use chebpade to produce an approximation to a given degree N, or chebyshev to attempt an
approximation with error at most

with(numapprox):

f0:= x -> arctan(2*x+1);

ChebApp1:= chebyshev(f0(x),x=-1..1,10^(-8));

The degree here will be 32.
ChebApp2:= unapply(eval(%, T = orthopoly[T]),x);

(2.1)(2.1)

(2.2)(2.2)

plot(f0(x)-ChebApp2(x),x=-1..1);

x
0 1

Computing Chebyshev polynomials
The Chebyshev polynomials can be defined by . But how should we
calculate them for a particular ?
It turns out that these polynomials satisfy a recurrence relation very much reminiscent of the
Fibonacci numbers:

, with initial values , .
cos(n*t) = 2*cos(t)*cos((n-1)*t) - cos((n-2)*t);

expand(%);

(2.3)(2.3)

This could be used with a for loop to calculate as many values of as you need.
V[0]:= 1; V[1]:= .234;

for count from 2 to 6 do

 V[count]:= 2*.234*V[count-1] - V[count-2]

end do;

Oh, but is it numerically stable?
rsolve(T(n)=2*x*T(n-1)-T(n-2),T(n));

The important things here are the and : the solution is a

linear combination of these, say , with

coefficients and that depend on but not on . A small error in, say, would produce an
error of this form in for > . If that grew as it would be bad news. Fortunately, for

 in the interval [-1,1] (which is where we want it), it doesn't grow. , so

and are complex numbers, and they have absolute value 1:

.
 So the error doesn't grow much as . Let's try an example, with .

y[0]:= 1; y[1]:= 0.8;

for count from 2 to 100 do

 y[count]:= 2*0.8*y[count-1] - y[count-2]

end do:

Here are the errors.
seq([n,y[n]-cos(n*arccos(0.8))],n=1..100);

Approximation using Chebyshev polynomials
So how could we have used the Chebyshev approximation for our function with this method of
evaluating the polynomials?
It would be more efficient to get the coefficients in a table.

for nn from 0 to 32 do

 CC[nn]:= coeff(ChebApp1,T(nn,x))

end do:

Now to make a procedure that takes x, evaluates the and evaluates ChebApp2.
The results will be accumulated in a variable R.
Each time we produce one of the we add the appropriate contribution to R.

ChebAppProc:= proc(x::numeric)

local i, R, T;

R:= CC[0] + x*CC[1];

T[0]:= 1; T[1]:= x;

for i from 2 to 32 do

(3.1)(3.1)

 T[i]:= 2*x*T[i-1]-T[i-2];

 R:= R + T[i]*CC[i];

end do;

R

end;

ChebAppProc(0.8); f0(0.8);
1.20362249250701

1.203622493
This will be more useful than the previous way of doing it only if we make sure to call
ChebAppProc with numeric arguments, rather than the symbolic variable . That's why I put in the
type specification x::numeric.
For example, this would be wrong:

plot(f0(x)-ChebAppProc(x),x=-1..1);

Error, invalid input: ChebAppProc expects its 1st argument, x,

to be of type numeric, but received x

What we can do instead is plot a function (or the difference of two functions) rather than an
expression.

plot(f0 - ChebAppProc, -1 .. 1);

(4.1)(4.1)

0 1

Padé Approximation
Instead of using a polynomial approximation, it's sometimes better to use a rational function, i.e. the

quotient of two polynomials. Consider a power series . A Padé approximant of type (

) is a rational function where and are polynomials of degrees at most and

respectively, , and the Maclaurin series of agrees with for as many terms as

possible, say the coefficient of in is 0 for .

Multiplying by , this says the coefficient of in is 0 for . That would
give us linear equations in unknowns, the coefficients of and .

But multiplying both and by a nonzero constant won't change , so we can assume that

. Now we just have unknowns. So we might hope that we can take .
Usually (but not always) this works. Sometimes it must be smaller.

ft:= convert(taylor(f0(x),x,11),polynom);

(4.3)(4.3)

(4.1)(4.1)

(4.8)(4.8)

(4.5)(4.5)

(4.4)(4.4)

(4.2)(4.2)

(4.7)(4.7)

(4.6)(4.6)

p5:= add(a[j]*x^j, j=0..5);

q5:= 1 + add(b[j]*x^j, j=1..5);

eqs:= [seq(coeff(ft*q5-p5,x,j)=0, j=0..10)];

solve(eqs);

f55:= eval(p5/q5,%);

Similarly, for a (4,5) approximant:
p4:= add(a[j]*x^j, j=0..4);

eqs:= [seq(coeff(ft*q5-p4,x,j)=0, j=0..9)];

(4.1)(4.1)

(4.9)(4.9)

(4.10)(4.10)

solve(eqs);

f45:= eval(p4/q5,%);

plot([f45-f0(x),f55-f0(x)],x=-1..1,-0.01..0.01,colour=[red,

green]);

(4.12)(4.12)

(4.1)(4.1)

(4.11)(4.11)

(4.9)(4.9)

x
0 1

The (5,5) approximant actually has a vertical asymptote at .
factor(f55);

fsolve(denom(f45));
873.2447298

plot([f45-f0(x),f55-f0(x)], x=-1..10, -0.01 .. 0.01, colour=

[red,blue]);

(4.1)(4.1)

(4.9)(4.9)

x
0 2 4 6 8 10

The Padé approximant might approximate the function well over a much larger interval than the
Maclaurin series approximation. Often some experimentation is needed to tell what are the best
and to use.
Maple computes Padé approximants with the pade command in the numapprox package.

f45 - pade(f0(x),x=0,[4,5]); normal(%);

(4.1)(4.1)

(4.13)(4.13)

(4.9)(4.9)

(4.14)(4.14)

0
The Padé approximant is usually even faster to compute than the corresponding polynomial, if done
using a continued fraction form.

hornerform(evalf(ft));

codegen[cost](%);

evalf(f45);

codegen[cost](evalf(f45));

convert(evalf(f45),confrac,x);

codegen[cost](%);

This gives me an excuse to say something about continued fractions.

Continued fractions

(4.1)(4.1)

(4.9)(4.9)

(5.4)(5.4)

(5.3)(5.3)

(5.6)(5.6)

(5.2)(5.2)

(5.1)(5.1)

(5.5)(5.5)

A continued fraction is an expression of the form
b[0]+a[1]/(b[1]+a[2]/(b[2]+a[3]/(b[3]+a[4]/`...`)));

where the ... might continue forever (an infinite continued fraction) or might stop at some point (a
terminating continued fraction). It is a simple continued fraction if all . If you delete
everything with a subscript , you get a finite expression which is called the nth convergent of the
continued fraction. Thus the zeroth, first and second convergents are

[b[0], b[0] + a[1]/b[1], b[0]+a[1]/(b[1]+a[2]/(b[2]))];

Of course, these could be simplified to ordinary quotients:
normal(%);

The numtheory package contains several commands for dealing with continued fractions.
with(numtheory):

The main one is cfrac. For a general continued fraction:
cfrac([b[0],[a[1],b[1]],[a[2],b[2]]]);

Or for a simple continued fraction:
cfrac([b[0],b[1],b[2],b[3],b[4]]) = normal(b[0]+1/(b[1]+1/(b

[2]+1/(b[3]+1/b[4]))));

The convergents may also be obtained with the nthconver command.
seq(nthconver([b[0],[a[1],b[1]],[a[2],b[2]],[a[3],b[3]]],j),

j=0..3);

(5.9)(5.9)

(4.1)(4.1)

(5.7)(5.7)

(4.9)(4.9)

(5.8)(5.8)

Or for a simple continued fraction:
seq(nthconver([b[0],b[1],b[2],b[3],b[4]],j),j=0..4);

To see the continued fraction typeset as a continued fraction:
CFRAC([b[0],[a[1],b[1]],[a[2],b[2]],[a[3],b[3]]]);

The numerators and denominators satisfy a recurrence relation. If the nth convergent is , then

 with

with

p[0]:= b[0]; p[-1]:= 1; q[0]:= 1; q[-1]:= 0;

for nn from 1 to 5 do

 p[nn]:= expand(b[nn]*p[nn-1] + a[nn]*p[nn-2]);

 q[nn]:= expand(b[nn]*q[nn-1] + a[nn]*q[nn-2]);

end do;

(5.9)(5.9)

(6.6)(6.6)

(4.1)(4.1)

(6.2)(6.2)

(6.3)(6.3)

(4.9)(4.9)

(6.7)(6.7)

(6.1)(6.1)

(5.10)(5.10)

(6.5)(6.5)

(6.4)(6.4)

nthconver([b[0],[a[1],b[1]],[a[2],b[2]],[a[3],b[3]]],3) - p

[3]/q[3];
0

Continued fractions for numbers
Consider any positive number x. We can represent it by a simple continued fraction with integer
elements as follows. Let , so . If that is 0, then . Otherwise

 with . Let . Again, if , then , otherwise

 etc.

The continued fraction for x terminates if and only if x is a rational number. For example:
cfrac([3,7,110,3]); CFRAC([3,7,110,3]);

7291
2320

cfrac(7291/2320);

x1:= 1/(7+1/(110+1/3));

7291/2320 -3 ;
331
2320

floor(2320/331);
7

2320/331 - 7;
3

331

331/3 - 110;

(6.7)(6.7)

(5.9)(5.9)

(4.1)(4.1)

(4.9)(4.9)

1
3

Maple commands introduced in this lesson:

pade in numapprox package
hornerform in numapprox package
cost in codegen package
convert(..., confrac)
numtheory package
cfrac in numtheory package
nthconver in numtheory package
CFRAC

