
Lesson 32: Iteration and approximation
restart;

A numerical iteration
Recurrence relations are often used in numerical methods. You want to compute some sequence
which satisfies a recurrence relation, so you start with known values for or the first few , and
iterate the recurrence formula. This may or may not be a good way to calculate . The main thing
that can go wrong is that the inevitable roundoff errors can grow with each iteration until they
overwhelm the true solution.
For example, suppose you want to approximate the following sequence of numbers, related to the
remainders in the series for :

 .

w:= n -> n! * (exp(1) - Sum(1/k!,k=0..n));

Digits:= 10: seq(evalf(w(n)),n=0..15);

Catastrophic cancellation is giving us fewer and fewer significant digits, because we're subtracting

two numbers e and that are very close. Can we get around that?

We could increase Digits, but for any particular value of Digits we'll still have a problem when is
large enough (and arbitrary precision isn't always available).
It's easy to see that we have the following recurrence relation:

recurrence := y(n) = n*y(n-1) - 1;

eval(recurrence, y=w);

expand(%);

simplify(lhs(%)-rhs(%));

(1.1)(1.1)

(1.2)(1.2)

combine(%);

value(%);
0

This suggests the following method.
W[0]:= evalf(exp(1)-1);

for count from 1 to 10 do

 W[count]:= count*W[count-1] - 1

end do;

So far, so good? But...
for count from 11 to 20 do

 W[count]:= count*W[count-1] - 1

end do;

(1.1)(1.1)

These results are absurd. The should all be positive, and not very large. Roundoff error has
struck again!
What happened here is that whatever roundoff error is in gets multiplied by n in . So any
error in would be multiplied by by the time you get to , even if no further roundoff error was
introduced. Eventually the roundoff errors are larger than the actual values.
How can we get around this? By using a different numerical method, one that doesn't magnify
roundoff errors. In this case, one way is to use the recursion but go backwards:

y(n-1) = solve(recurrence,y(n-1));

If we use an approximate value for to calculate , any error in the value for gets
divided by . The errors decrease, so should end up very accurate (of course, additional error
is introduced by roundoff at each step, but it won't be magnified). We could start off with even a
very rough approximation for , and after a few backward steps the error will be quite small.

W[50] := 0.0;

for nn from 50 to 1 by -1 do

 W[nn-1] := (W[nn]+1)/nn

end do;

(1.1)(1.1)

Actually . Maple should be able to evaluate these rapidly converging series quite

well. Let's compare its results to the we just computed.

(1.1)(1.1)

[seq([n,W[n]-evalf(Sum(n!/k!,k=n+1..infinity))],n=0..50)];

Up to n=45, our results were about as accurate as you could hope for with Digits = 10.
If we wanted , would it have been worthwhile to try to get a more accurate value for ?
A method is numerically stable if small errors in intermediate results will have a negligible effect
on the final result, or numerically unstable if they will have a large effect on the final result. So
this recurrence was numerically unstable in the forward direction, but numerically stable in the
backward direction. It's a good idea to look for numerical stability when choosing a numerical
method.

Approximating a function
Suppose you're interested in computing a particular function , perhaps a rather complicated one.
 You're going to need to compute it lots of times, so it's important to have an efficient way of doing
that. For example, perhaps you're designing a device that will need to compute this function, and
will need to do it very quickly. You're willing to spend some effort in finding an efficient way to
find a good method of calculating the function, if that will be rewarded with improved performance
when the device is operating. Fortunately, you don't need to compute it exactly: a good
approximation will do. Specifically, you are given > 0 and an interval , and you want an
easily computed function such that for all in this interval. For example, a
polynomial with not too high a degree would be nice.
 The particular example I'll take is on the interval with .

f0:= x -> arctan(2*x+1);

plot(f0(x),x=-1 .. 1);

(1.1)(1.1)

x
0 1

1

 Hearing the words "polynomial" and "approximation", a Calculus student might first think of
Taylor series. However, these turn out not to be useful for our purpose. The idea of a Taylor series
is that it gives a really good approximation of near one point. On the rest of the interval,
however, the approximation might be terrible.

taylor(f0(x), x=0, 11);

TaylorApp:= unapply(convert(%, polynom), x);

plot(f0(x) - TaylorApp(x), x=-1..1);

(1.1)(1.1)

x
0 1

1

2

The approximation is excellent for near 0, but poor near the ends of the interval, so the maximum

error is about 2.8. In fact, the radius of convergence of this Taylor series is , and for larger

than this the Taylor series is basically useless.

Fourier Series
The next type of series to look at is a Fourier series. We're looking at a function on , so we
need to relate the interval

 that we used for Fourier series to The appropriate saw function is
saw := x -> x/Pi - 2*floor(x/(2*Pi)) - 1;

plot(saw(x),x=-10 .. 10, discont=true);

(1.1)(1.1)

x
0 5 10

1

The periodic version of is then .

f1 := f0 @ saw;

plot([f0(x/Pi-1), f1(x)],x=-10..10, colour=[red,blue]);

(3.1)(3.1)

(1.1)(1.1)

(3.2)(3.2)

x
0 5 10

1

Now for the Fourier series coefficients. Maple can't do these integrals symbolically.
1/Pi * int(f1(t)*cos(k*t),t=0..2*Pi) assuming k::integer;

That should be 0 for t in this interval. It's curious that Maple can't simplify this:

simplify(floor(t/(2*Pi))) assuming t>0,t<2*Pi;

That should be 0. If we manually make it 0, will it work?
Ak:=eval(%%, floor=0) assuming k::posint;

simplify(%) assuming k::posint;

(3.3)(3.3)

(1.1)(1.1)

(3.2)(3.2)

(3.5)(3.5)

(3.4)(3.4)

What about for particular values of ?
eval(%,k=2);

eval(%%,k=0);

Except for , it still can't do the integral in closed form. No problem, we'll do the coefficients
using numerical integration. Knowing this, it's better to use Int rather than int, to save us from
wasting time with symbolic integrations that won't work.

a:= unapply(1/Pi*Int(arctan(2*t/Pi-1)*cos(k*t),t=0..2*Pi), k)

;

a(0):= value(a(0));

seq(evalf(a(k)),k=0..5);

Similarly for b(k).
b:= unapply(1/Pi * Int(arctan(2*t/Pi-1)*sin(k*t),t=0..2*Pi),

k);

(1.1)(1.1)

(3.2)(3.2)

For an approximation to the sum of the series, we can use a partial sum, i.e. take the sum up to some
N instead of up to infinity.

Psum := N -> evalf(a(0)/2 + add(a(k)*cos(k*t) + b(k)*sin(k*

t),k=1..N));

Psum(5);

plot([f1(t),Psum(5)],t=-10..10,colour=[red,blue]);

t
0 5 10

1

Here's an animation to see how well the approximation goes as N increases. I'm using display(...,
insequence=true) rather than animate to avoid premature evaluation problems.

with(plots):

display([seq(plot([f1(t),Psum(N)],t=-1..7,title=('N'=N)),N=1.

.20)],insequence=true);

(1.1)(1.1)

(3.2)(3.2)

t
0 1 2 3 4 5 6 7

1

N = 1

The approximation is rather bad near the jumps at and 2 . That's inevitable: the partial sum is a
continuous function, so it can't stay close to the discontinuous function when that takes a jump.
Somewhat surprising, perhaps, is the fact that the partial sum "overshoots" the jump, and that the
size of the "overshoot", i.e. the difference between the maximum of Psum(N) and the maximum of

, doesn't go to 0 as N increases. This is called the Gibbs phenomenon.

Fourier becomes Chebyshev
The poor approximation of our function by partial sums of its Fourier series is due to the
discontinuities. In general, the smoother a function is, the faster its Fourier series coefficients go to
0, and so the better approximation the partial sums of the Fourier series are for the function. The best
case is for an analytic function, where the coefficients go to 0 exponentially as . So we might
try replacing the saw function by something analytic that takes the interval to Well,
the cosine function does that.

plot(f0(cos(t)),t=-10..10);

(1.1)(1.1)

(3.2)(3.2)

t
0 5 10

1

Now we have a nice analytic function, that will be very well approximated by its Fourier series.
This has an additional, very important, benefit: is a polynomial in ,
so our approximation becomes a polynomial in rather than a trigonometric function.

seq(expand(cos(k*t)), k = 2 .. 10);

fp := unapply(f0(cos(t)),t);

for count from 0 to 10 do

 a[count]:= evalf(1/Pi * Int(fp(t)*cos(count*t),t=-Pi..Pi))

end do:

a[0]/2 + add(a[k]*cos(k*t), k = 1 .. 10);

(1.1)(1.1)

(3.2)(3.2)

(4.2)(4.2)

(4.1)(4.1)
expand(%);

eval(%,cos(t)=x);

ChebApp:= unapply(%,x);

The Cheb is short for "Chebyshev". This is called a Chebyshev series approximation for on
the interval [-1,1]. The polynomials such that are called the Chebyshev
polynomials of the first kind.
Let's see how well the Chebyshev series does at approximating

plot(f0(x)-ChebApp(x),x=-1..1);

(1.1)(1.1)

(3.2)(3.2)

x
0 1

Chebyshev approximations in Maple
Actually Maple has commands to produce Chebyshev series approximations: chebpade and
chebyshev in the numapprox package. chebpade stands for Chebyshev-Padé, and the Padé part is
because it can do something a bit more general than just a Chebyshev series.
We can use chebpade to produce an approximation to a given degree N.

with(numapprox):

chebpade(f0(x),x=-1..1,10);

The result is given in terms of T(n,x), which stand for the Chebyshev polynomials. Notice that the
coefficient of each is the coefficient of in our Fourier series. The actual definition

(1.1)(1.1)

(3.2)(3.2)

of as Chebyshev polynomials is contained in the orthopoly package. I'm not going to load
that package, but instead use it this way:

eval(%, T = orthopoly[T]);

Notice that this is our ChebApp(x) (up to round-off error affecting the last digit of some
coefficients).

% - ChebApp(x);

The maximum error in ChebApp(x) was about , still more than our . To attempt an
approximation with error at most , we can try chebyshev. We give chebyshev our desired , and it
will produce an approximation of whatever degree it needs.

chebyshev(f0(x),x=-1..1,10^(-8));

The degree here will be 32.

(1.1)(1.1)

(3.2)(3.2)

Maple objects introduced in this lesson:
numapprox package
chebpade (in numapprox package)
orthopoly[T]
chebyshev (in numapprox package)

