Lesson 32: Iteration and approximation

|:> restart;

VY A numerical iteration

Recurrence relations are often used in numerical methods. You want to compute some sequence y,
which satisfies a recurrence relation, so you start with known values for y, or the first few y,, and
iterate the recurrence formula. This may or may not be a good way to calculate y,. The main thing

that can go wrong is that the inevitable roundoff errors can grow with each iteration until they
overwhelm the true solution.

For example, suppose you want to approximate the following sequence of numbers, related to the
remainders in the series for e:

)

(> w=n ->nl * (exp(l) - Sun(1/k!,k=0..n)):

N)

_> Digits:= 10: seq(eval f(wn)),n=0..15);
1.718281828, 0.718281828, 0.436563656, 0.30969097, 0.23876388, 0.1938194, 0.162916,
| 0.14041, 0.1233, 0.1095, 0.098, 0.1, 0., 0., 0., 0.

Catastrophic cancellation is giving us fewer and fewer significant digits, because we're subtracting
n

1
two numbers e and T that are very close. Can we get around that?
k=0 K-

We could increase Digits, but for any particular value of Digits we'll still have a problem when 7 is
large enough (and arbitrary precision isn't always available).
It's easy to see that we have the following recurrence relation:
> recurrence :=y(n) = n*y(n-1) - 1;
recurrence :=y(n) =ny(n—1) —1

> eval (recurrence, y=w);

Tl el (52

> expand(% ;

> conbi ne(% ;

> val ue(%;

;This suggests the following method.
> WO]:= eval f(exp(1)-1);
W, :=1.718281828

> for count from1l to 10 do
Wcount]:= count*Wcount-1] - 1
end do;
W, :=0.718281828

W, :=0.436563656
W, :=0.309690968
W, :=0.238763872
Wy :=0.193819360
W, :=0.162916160
W, :=0.140413120
Wg :=0.123304960
Wy = 0.109744640
W, = 0.097446400
:So far, so good? But...

> for count from1l to 20 do

Wcount]:= count*Wcount-1] - 1

end do;
w,, =0.071910400

W,, = -0.137075200
5 = -2.781977600
4= ~39.94768640
= -600.2152960
o = ~9604.444736

S 3 3=

o]

SY Y Y oS
i

(=]

J = -1.632765605 10°
-2.938979089 10°
-5.584060369 10’
-1.116812075 10°

(1.1)

(1.2)

These results are absurd. The W, should all be positive, and not very large. Roundoff error has

| struck again!

What happened here is that whatever roundoff error is in y, _ , gets multiplied by # iny,. So any
error in y,, would be multiplied by n! by the time you get to y,, even if no further roundoff error was
_introduced. Eventually the roundoff errors are larger than the actual values.

How can we get around this? By using a different numerical method, one that doesn't magnify
| roundoff errors. In this case, one way is to use the recursion but go backwards:

> y(n-1) = solve(recurrence,y(n-1));
y(n—1) =21

If we use an approximate value for y(n) to calculate y(n — 1), any error in the value for y(n) gets
divided by n. The errors decrease, so y(0) should end up very accurate (of course, additional error
is introduced by roundoft at each step, but it won't be magnified). We could start off with even a
| very rough approximation for y(/N), and after a few backward steps the error will be quite small.

> W50] := 0.0;
for nn from50 to 1 by -1 do
Wnn-1] := (Wnn]+1)/nn

end do;
Wso =0.

o :=0.02000000000
:=0.02081632653
;:=0.02126700681
¢ = 0.02172908526

o]

5 =0.02221150185
, =0.02271581116
, =0.02324354116
, =0.02379636142

=0.02437610383

—_—

o -= 0.02498478302
9 :=0.02562461958
:=0.02629806718
:=0.02700784387
:=0.02775696876
:=0.02854880469
4= 0.02938710871
:=0.03027609144
:=0.03122048761
:=0.03222564025

[o)} | e}

W

w

SSSNISISSSSSSSSSSSSSSS

—_

Wy, = 003329760129
W,q == 0.03444325337
W,q = 0.03567045700
W, = 003698823061
W, = 0.03840697152
W, = 0.03993872969
W,, = 0.04159754920
W,, == 0.04339989788
W,, = 0.04536521296
W,, = 0.04751660059
Wy, = 0.04988174290
W, = 0.05249408715
W, = 005539442563
W, = 0.05863302367
W, = 0.06227253082
W5 = 0.06639203319
Wy, = 0.07109280220
W, = 0.07650662871
W,, = 0.08280820223
Wy, = 0.09023401683
W, =0.09911218336

:=0.1099112183
:=0.1233234687
:=0.1404154336
:=0.1629164906
:=0.1938194152
:=0.2387638830
:=0.3096909708
:=0.4365636570
:=0.7182818285
W, = 1718281828

SSEISITITEES

oo

!
Actually w, = z Z—' Maple should be able to evaluate these rapidly converging series quite
k=n+1":
well. Let's compare its results to the W, we just computed.

\ 4

> [seq([n,Wn]-eval f(Sum(n!/k!,k=n+1..infinity))],n=0..50)];

[10,0.1,11,0.7, [2,1.10"°], [3, 0.7, [4,0.1, [5, 1. 107"°], [6, 1. 107°], [7, 0.1, [8, 0.1, [9,
0.1, [10, 1. 107, [11, -2. 107", [12, 2. 1071], [13, -2. 1071, [14, -1. 107'1], [15,
11071, [16, 2. 10711, [17, 2. 10711, [18, - 1. 101], [19, 1. 1071, [20, 1. 107'], [21,
0.1, [22, 1. 101, 123, 0.7, [24, 1. 10"], [25, 2. 107'1], [26, 2. 107", [27, 0.7, [28,
-1.10M], [29, -1. 10, [30, - 1. 107M], [31, 1. 101, [32, - 1. 107M1], [33, 1. 107!"],
[34,0.,[35,0.1, [36, 1. 10"], [37, 0.7, [38, 1. 10™'"], [39, 0.1, [40, 0.1, [41,
-1.10], 142,0.7, 143, 0.1, [44, 1. 107'"], [45, -8.107'"], [46, -3.61 107°], [47,
-1.6999 107], [48, -0.00000816007], [49, -0.000399843321], [50, -0.019992165841]

| Up to n=45, our results were about as accurate as you could hope for with Digits = 10.
If we wanted w,,, would it have been worthwhile to try to get a more accurate value for wg,?

A method is numerically stable if small errors in intermediate results will have a negligible effect
on the final result, or numerically unstable if they will have a large effect on the final result. So
this recurrence was numerically unstable in the forward direction, but numerically stable in the
backward direction. It's a good idea to look for numerical stability when choosing a numerical

| method.

Approximating a function

Suppose you're interested in computing a particular function f(x), perhaps a rather complicated one.
You're going to need to compute it lots of times, so it's important to have an efficient way of doing
that. For example, perhaps you're designing a device that will need to compute this function, and
will need to do it very quickly. You're willing to spend some effort in finding an efficient way to
find a good method of calculating the function, if that will be rewarded with improved performance
when the device is operating. Fortunately, you don't need to compute it exactly: a good
approximation will do. Specifically, you are given € >0 and an interval [a, b], and you want an
easily computed function g(x) such that|g(x) — f(x)| < € for all x in this interval. For example, a
| polynomial g (x) with not too high a degree would be nice.

The particular example I'll take is f,(x) =arctan(2 x + 1) on the interval [-1, 1] withe = 1078,

> f0:= x -> arctan(2*x+1);
f0:=x—arctan(2x + 1)

=> plot (fO(x),x=-1 .. 1);

Hearing the words "polynomial" and "approximation", a Calculus student might first think of
Taylor series. However, these turn out not to be useful for our purpose. The idea of a Taylor series
is that it gives a really good approximation of f,(x) near one point. On the rest of the interval,
however, the approximation might be terrible.
> taylor(fO(x), x=0, 11);

1 2,2 3 4 5 4 6 8 7, 16 9 16 10 11
I 4Tc+x x+3x 5x+3x 7x+9x 5x+0(x)
> Tayl or App: = unappl y(convert (% polynom, Xx);
e b P2y 23 4 s 46 8 7, 16 9 16 10
TaylorApp.x—>4ﬂ:+x x+3x 5x+3x 7x+9x Sx

[> plot (fo(x) - TaylorApp(x), x=-1..1):

\ 4

The approximation is excellent for x near 0, but poor near the ends of the interval, so the maximum

V2

2

error is about 2.8. In fact, the radius of convergence of this Taylor series is , and for |x| larger

| than this the Taylor series is basically useless.

Fourier Series

[The next type of series to look at is a Fourier series. We're looking at a functionon [-1, 1], so we
| need to relate the interval
=[O, 2 1t] that we used for Fourier series to [- 1, 1]. The appropriate saw function is
> saw (= x -> x/Pi - 2*floor(x/(2*Pi)) - 1;
saw == x— = —2 floor Ly 1
T 2 x

_> pl ot (saw(x), x=-10 .. 10, discont=true);

- 1 —
:The periodic version of f(x) is then f,(saw(x)).

_> fl1:=f0 @saw,
_ f1 :=f0@saw
> plot([fO(x/Pi-1), f1(x)],x=-10..10, col our=[red, bl ue]);

;Now for the Fourier series coefficients. Maple can't do these integrals symbolically.

> 1/Pi * int(fl(t)*cos(k*t),t=0..2*Pi) assum ng k::integer;
2n

arctan 21t —4ﬂoor(L L — 1| cos(kt) dt
. T 2

T

That ﬂoor(% L j should be 0 for # in this interval. It's curious that Maple can't simplify this:
T

> sinmplify(floor(t/(2*Pi))) assum ng t>0,t<2*Pi;
floor L

2 r
;That should be 0. If we manually make it 0, will it work?

> Ak: =eval (%4 floor=0) assum ng k::posint;
sinmplify(% assum ng k::posint;

@3.1)

2n
J arctan(ﬂ — lj cos(kt) dt
T
0

Ak =
i
2n
-2t
J’ arctan(J] cos(kt) dt
T
-2 (3.2)
i T
| What about for particular values of k?
> eval (% k=2);
27w
-2t
J arctan(ij cos(2¢) dt
T
-0 (3.3)
i T
> eval (%4 k=0) ;
1 2 3 1
ry T — B marctan(3) + " ntin(5)
- (3.4)
T

Except for k=0, it still can't do the integral in closed form. No problem, we'll do the coefficients
using numerical integration. Knowing this, it's better to use Int rather than int, to save us from
| wasting time with symbolic integrations that won't work.

> a:= unapply(1/Pi*Int(arctan(2*t/Pi-1)*cos(k*t),t=0..2*Pi), k)

:a(O):: val ue(a(0));
2xn

J arctan(—zz — 1) cos(kt) dt
o
0

a=k—
i
L n2 + 3 Tarctan(3) — L mtin(5)
8 2 4
a(0) =

i T

> seq(evalf(a(k)), k=0..5);

1.078510098, -0.2613646026, -0.01778157083, -0.005502151119, -0.004907326798, 3.5)
| -0.003256263089
| Similarly for b(k).

> b:= unapply(2/Pi * Int(arctan(2*t/Pi-1)*sin(k*t),t=0..2*Pi),

k) ;
2n

J arctan(—zt — 1) sin(kt) dt
T
0

I

For an approximation to the sum of the series, we can use a partial sum, i.e. take the sum up to some
N instead of up to infinity.

=> Psum:= N -> eval f(a(0)/2 + add(a(k)*cos(k*t) + b(k)*sin(k*
t),k=1..N));
Psum :=N—>evalf(% a(0) + add(a (k) cos(kt) +b(k) sin(k1), k=1.N))

> Psum(5);

0.5392550490 — 0.2613646026 cos(t) — 0.6946934775 sin(z) — 0.01778157083 cos(2. t)
—0.3534766624 sin(2. ¢t) —0.005502151119 cos(3. ¢) —0.2184358835 sin(3. 1)
—0.004907326798 cos(4. t) —0.1625398224 sin (4.) — 0.003256263089 cos(5. ¢)
—0.1300901623 sin(5. t)

=> plot([fl1(t),Psum5)],t=-10..10, colour=[red,blue]);

Here's an animation to see how well the approximation goes as N increases. I'm using displayc(...,
_insequence=true) rather than animate to avoid premature evaluation problems.

> with(plots):
di splay([seq(plot ([f1(t),Psum(N)],t=-1..7,title=("N =N)), N=1.
.20)],insequence=true);

\ 4

The approximation is rather bad near the jumps at 0 and 2. That's inevitable: the partial sum is a
continuous function, so it can't stay close to the discontinuous function f; when that takes a jump.
Somewhat surprising, perhaps, is the fact that the partial sum "overshoots" the jump, and that the

size of the "overshoot", i.e. the difference between the maximum of Psum(N) and the maximum of
/1> doesn't go to 0 as N increases. This is called the Gibbs phenomenon.

Fourier becomes Chebyshev

The poor approximation of our function by partial sums of its Fourier series is due to the
discontinuities. In general, the smoother a function is, the faster its Fourier series coefficients go to
0, and so the better approximation the partial sums of the Fourier series are for the function. The best
case is for an analytic function, where the coefficients go to 0 exponentially asn — . So we might
try replacing the saw function by something analytic that takes the interval [0,2 7t]to [-1, 1]. Well,
the cosine function does that.

> plot(fO(cos(t)),t=-10..10);

| Now we have a nice analytic function, that will be very well approximated by its Fourier series.
This has an additional, very important, benefit: cos(k ¢) is a polynomial in cos(z),
| S0 our approximation becomes a polynomial in x rather than a trigonometric function.

> seq(expand(cos(k*t)), k =2 .. 10);
2 cos(t)2 —1,4 cos(t)3 —3 cos(t), 8 cos(t)4 —8 cos(z‘)2 +1,16 cos(t)5 —20 cos(t)3
+ 5 cos(t), 32 cos(t)6—48 cos(t)4+18 cos(t)2—1,64 cos(t)7—112 cos(t)5
+56 cos()® — 7 cos(1), 128 cos(#)® — 256 cos(1)® + 160 cos(1)* — 32 cos(1)” + 1,
256 cos(t)9 — 576 cos(t)7 + 432 cos(t)5 — 120 cos(t)3 + 9 cos(t), 512 cos(t)lo
| — 1280 cos(r)® + 1120 cos(#)® — 400 cos(#)* + 50 cos(7)* — 1
(> fp := unappl y(f0(cos(t)),t):
i fp =t—arctan(2 cos(t) + 1)
_> for count fromO to 10 do
a[count]:= evalf(1/Pi * Int(fp(t)*cos(count*t),t=-Pi..Pi))
| end do:
> a[0]/2 + add(a[k] *cos(k*t), k =1 .. 10);
0.4522784470 + 1.058171027 cos(¢) — 0.2720196494 cos(2 t) — 0.02881149458 cos(3 ¢)

+ 0.05817102725 cos(4 t) —0.01794454247 cos(5 ¢) — 0.005730457513 cos(6 1)
+ 0.006960372166 cos(7) — 0.001644114298 cos(8 #) —0.001121821048 cos(9 1)
+0.0009741971126 cos(10 ¢)

> expand(% ;
0.7680442382 cos(t)> + 0.7855812697 — 1.551301055 cos(z)° + 1.328619386 cos(¢)°

— 1457418934 cos(1)® — 0.2871861883 cos(#)” + 0.0876930459 cos(7)"*
— 1011234239 cos(7)” + 1091632742 cos(r)” +0.9960638037 cos(1)

| 404987889217 cos(r) "’

_> eval (% cos(t)=x);

—0.2871861883 x” + 0.0876930459 x* — 1.011234239 x> + 1.091632742 x’
+0.9960638037 x + 0.4987889217 x'°

> ChebApp: = unappl y(% Xx) ;
ChebApp := x—0.7680442382 x° + 0.7855812697 — 1.551301055 x° + 1.328619386 x°
— 1.457418934 x> — 02871861883 x° + 0.0876930459 x* — 1.011234239 x

+1.091632742 x” + 0.9960638037 x + 0.4987889217 x'°

| polynomials of the first kind.
Let's see how well the Chebyshev series does at approximating f;(x).

_> pl ot (f O(x) - ChebApp(x), x=-1..1);

0.7680442382 x> + 0.7855812697 — 1.551301055 x° + 1.328619386 x° — 1.457418934 x°

@.1)

4.2)

[The Cheb is short for "Chebyshev". This is called a Chebyshev series approximation for f,(x) on
the interval [-1,1]. The polynomials 7, (s) such that cos(n ¢) =T, (cos(?)) are called the Chebyshev

0.0004 A

0.0003

Y Chebyshev approximationsin Maple

Actually Maple has commands to produce Chebyshev series approximations: chebpade and
chebyshev in the numapprox package. chebpade stands for Chebyshev-Padé, and the Padé part is
because it can do something a bit more general than just a Chebyshev series.

| We can use chebpade to produce an approximation to a given degree N.

| > Wi th(numappr ox) :

> chebpade(fO(x),x=-1..1,10);

-0.0288114945860669 T(3, x) +0.0581710272714922 T(4, x)
—0.0179445424708702 T'(5,x) — 0.00573045751510578 T (6, x)
+ 1.05817102727149 T'(1, x) — 0.272019649514069 T'(2, x)
+0.452278447151191 T(0,x) —0.00112182104832474 T'(9, x)
+0.000974197112900724 T(10, x) + 0.00696037216927651 T(7, x)
—0.00164411429807496 T'(8, x)

[The result is given in terms of T(n,x), which stand for the Chebyshev polynomials. Notice that the
coefficient of each T'(n, x) is the coefficient of cos(# ¢) in our Fourier series. The actual definition

of T'(n, x) as Chebyshev polynomials is contained in the orthopoly package. I'm not going to load
| that package, but instead use it this way:

> eval (% T = orthopoly[T]);

0.996063804055484 x + 0.768044238351589 x° — 1.55130105536918 x°
+1.32861938627262 x° — 1.45741893466652 x° — 0.287186188371133
+0.0876930460447320 x* — 1.01123423928854 x* + 1.09163274266875 x’
+0.498788921805171 x'* +0.785581270040882

[Notice that this is our ChebApp(x) (up to round-off error affecting the last digit of some
| coefficients).

> % - ChebApp(x);

3.55484086611568 1071%x + 1.51588852581597 1071 x* — 3.69178687620320 100 x°
+2.72615929830522 10"1°x° — 6.66521504655293 107108
—7.11329883884559 107" x” + 1.44731990281421 107'%x*

— 2.88544965698634 107'°x* + 6.68745725462827 107"’
+1.05170538944321 107 x'* 4 3.40881989302488 107'°

The maximum error in ChebApp(x) was about 4 10~*, still more than our e =10"". To attempt an

approximation with error at most €, we can try chebyshev. We give chebyshev our desired €, and it
| will produce an approximation of whatever degree it needs.

> chebyshev(fO0(x),x=-1..1,10"(-8));
-0.00000757640505946219 T(18, x) + 0.00000296610644775531 T(19, x)

— 0.0288114945860669 T'(3, x) + 9.10669348976225 107 7(20,x)
+ 0.0581710272714922 T'(4, x) —0.0179445424708701 T'(5, x)

+ 4.24644368876864 107 T(25, x) + 5.66240774303582 10° T(26, x)
+2.49134438606034 10 T(32, x) — 4.16389150932986 107 7(27, x)

+2.43382924141505 107 7(23,x) +0.000142833053852007 T'(13, x)
—0.00573045751510579 T(6,x) + 1.05817102727149 T'(1, x)
—0.272019649514069 T'(2, x) + 0.452278447151191 T(0, x)

—0.00112182104832474 T'(9, x) + 2.45005887196057 10 T(28,x)
+1.21978131469271 10 7(29,x) +0.000974197112900738 T(10, x)

—2.43009422324076 107 7(24,x) +0.00696037216927648 T(7, x)
—0.00164411429807495 T'(8,x) — 0.00000137447961971678 T'(21, x)

+3.88083734932629 107 T'(22, x) + 0.0000209405094970062 T'(16, x)
—0.000137741903096520 T(11,x) —0.000215989116121847 T (12, x)
+0.00000233904648048977 T(17,x) — 0.00000413079194211789 T(14, x)
i — 0.0000408504603294581 T (15, x) — 6.85347846873698 10™ T'(30, x)

[The degree here will be 32.

Y Maple objectsintroduced in thislesson:

numapprox package

chebpade (in numapprox package)
orthopoly|T]

chebyshev (in numapprox package)

