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Lesson 31: Recurrences, iteration and 
approximation 

restart; 

read "d:/m210/fibonacci.txt";

Some Fibonacci puzzles
These are some problems from the Fibonacci Quarterly that can be solved with the help of mpow 
and fib4.
(1) Let  be any solution (in integers) of the recurrence .  Show that 

.

Solution: If  , then , so 
M . <H(n-1), H(n)>;

H(n+15) = (M^15 . <H(n-1),H(n)>)[2];

% mod 10;

(2).  Show that  is divisible by  (but not by ).

You get from one power of 5 to the next by multiplying by 5.  Can fib4 tell us a useful identity?
fib4(5*k);

factor(%);

So  is divisible by , i.e. every time we multiply  by 5 we get an additional factor of 5.  Since 

 = 1 is divisible by , we have by mathematical induction  is divisible by  for every 

nonnegative n.
Could  be divisible by a higher power of 5?  Certainly not for  or .

If it's true for the first time for , then with  we must have 

 divisible by 5.  But  is already divisible by 5, so  would have to be divisible by 5.  And then 
 would be divisible by 5.  But if  and  were divisible by 5, then all the Fibonacci 
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numbers would be divisible by 5, and  certainly isn't.

(3) What is , if  for nonnegative integers  with ?
This is another recurrence relation, but a nonlinear one.  Let's start by calculating a few terms

a[0]:= 1;

for nn from 0 to 5 do

  a[nn+1]:= 5*a[nn]^3 - 3*a[nn]

end do;

Maybe it's good to have stopped here: the numbers are growing very rapidly.  This being a problem 
that's supposed to have something to do with Fibonacci numbers, we might remember that  is
a Fibonacci number

fib4(9);
34

Of course  is also a Fibonacci number, namely .  You might make a wild guess from this, 
that .  Let's test it for these first few:

seq(a[n]-fib4(3^n),n=1..6);

It seems to work.  Now can we prove it?
fib4(3*k);

This should be , at least if  is a power of 3, in order for our conjecture to be true.

expand(%);

What's the difference between that and  

% - (5*F[k]^3 - 3*F[k]);

factor(%);



Well, the  isn't 0, so maybe the other factor is.

Q:= k -> -fib4(k-1)^2-fib4(k-1)*fib4(k)+fib4(k)^2-1;

seq(Q(k),k=1..10);

It looks like this should be 0 for odd  and  for even .  That will be fine for our purposes: the 
powers of 3 are all odd.  Can we prove it by mathematical induction?
If the pattern works, Q(k+1) should be -2 when Q(k) = 0 and 0 when Q(k) = -2,
so in any case Q(k) + Q(k+1) = -2.

Q(k) + Q(k+1);

normal(%);

Yes, it works.  Working backwards, we have a proof:
This calculation showed that .  
We know .  
Then by mathematical induction we get that  if  is odd and  if  is even.
Maple showed that   = , so if  is odd (and in particular if  is a 
power of 3) this is 0. 
That says that  satisfies the recurrence relation .  Since it also satisfies the 

initial condition , by mathematical induction this must be .
By the way, for fans of linear algebra, there's another way to look at the equation 

-Q(k) - 1 = (-1)^k;

The left side is the determinant of :
mpow(k);

LinearAlgebra[Determinant](%);

But , and 
LinearAlgebra[Determinant](M);

Solving recurrences
Maple has a command for solving recurrence relations, i.e. getting an explicit formula for their 
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solutions: rsolve.  Here's the first recurrence relation we looked at in Lesson 29:
a:= 'a':

rsolve({a(0)=1, a(n)=2*a(n-1)}, a(n));

2n

It works for some nonlinear recurrence relations, but not many.  Here's the one from the last 
Fibonacci puzzle:

rsolve({a(n+1) = 5*a(n)^3-3*a(n), a(0)=1},a(n));

Let's try an easier one.
rsolve({a(n)=3*a(n-1)^2,a(0)=2},a(n));

But it's pretty good for the linear ones.  How about the Fibonacci relation?
sol := rsolve({f(n)=f(n-1)+f(n-2),f(0)=0,f(1)=1},f(n));

Well, if it works that's another way to calculate the Fibonacci numbers.
fib5:= unapply(%,n);

fib5(4);

expand(%);
3

I might put the expand into the function.
fib6:= n -> expand(fib5(n));

seq(fib4(n)=fib6(n),n=0..10);

OK, it seems to work.  Can we prove it?  To prove it by mathematical induction, knowing that fib6
(0) and fib6(1) are  and  respectively, we just have to prove that it satisfies the recurrence 
relation. 

fib6(n)-(fib6(n-1)+fib6(n-2));
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normal(%);
0

Binet's formula, the Golden Ratio and Fibonacci

For those inclined to linear algebra,  and  are the eigenvalues of the matrix 

M, and this formula can be obtained by diagonalizing M.
LinearAlgebra[Eigenvalues](M);

 The formula is called "Binet's formula", although Binet wasn't the first person to find it.

 is a famous number: it's sometimes called the Golden Ratio and denoted by the Greek 

letter .  The DaVinci Code contains all sorts of nonsense about it (to be fair, such nonsense appears 
in lots of other places too).

phi:= 1/2 + sqrt(5)/2; evalf(phi);

1.618033988
To Golden Ratio enthusiasts, just about any ratio that's close to 1.6 (e.g. the ratio between your 
height and the height of your navel) is this number.
See e.g. <http://www.maa.org/devlin/devlin_06_04.html >.  

 and  (which is ) are the roots of the polynomial .

solve(x^2-x-1, x);

That polynomial enters into this because it is the characteristic polynomial of the matrix .
LinearAlgebra[CharacteristicPolynomial](M,x);
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Binet's formula is not necessarily a good way to calculate particular values of .
If you want to do an exact calculation, you must expand out the 'th powers (as we did in fib6).  
Each will involve  terms, of which the even numbered ones cancel and the odd ones are the 

same for both  and , leaving about  rational numbers to add.

It's easier to use repeated squaring on the matrix, where the number of steps is essentially 
proportional to .
On the other hand, you could use evalf, in which case the answer will only be approximate when  is
large, unless you use a high value for Digits.

evalf(fib5(100));

Digits:= 22: evalf(fib5(100));

round(%);
354224848179261915062

fib4(100);
354224848179261915075

Not quite enough digits...
Digits:= 25: evalf(fib5(100));

round(%);
354224848179261915075

What the formula is really good for is giving the asymptotic behaviour of  for large .  

Since   < ,  is approximately , with  <  for all 

and converging to 0 as .  
fibapp:= n -> phi^n/sqrt(5);

For even ,  is slightly less than fibapp(n), for odd  it's slightly greater.

Digits:= 20: 

fib4(30), evalf(fibapp(30));

fib4(31), evalf(fibapp(31));

(fibapp(n)=37889062373143906);

invfib1:= x -> log[phi](x*sqrt(5));
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evalf(invfib1(37889062373143906));
81.000000000000000001

fib4(81);
37889062373143906

A numerical iteration
Recurrence relations are often used in numerical methods.  You want to compute some sequence  
which satisfies a recurrence relation, so you start with known values for  or the first few , and 
iterate the recurrence formula.  This may or may not be a good way to calculate .  The main thing 
that can go wrong is that the inevitable roundoff errors can grow with each iteration until they 
overwhelm the true solution.
For example, suppose you want to approximate the following sequence of numbers, related to the 
remainders in the series for :

 .  How could you compute them?

Maple commands introduced in this lesson:
rsolve


