
(2.1)(2.1)

(1.2)(1.2)

(1.1)(1.1)

Lesson 30: Fibonacci numbers
restart;

Fourier series again
Last time I said I didn't know a nice formula for these integrals, which were coefficients in the

Fourier series of

J:= 1/Pi * int(cos(k*t)/(2+cos(t)),t=0..2*Pi) assuming

k::posint;

Well, now I do (and I should have remembered it, because it's a standard Math 300 calculation).

The answer should be for any positive integer (that's why I assumed k is a posint,

short for positive integer, rather than just integer: that formula wouldn't work for negative k).
seq(simplify(J-2/sqrt(3)*(sqrt(3)-2)^k),k=0..10);

It's interesting that Maple can do the calculation for any particular but can't do it in general.

Efficient matrix powers
Last time we saw a way to calculate Fibonacci numbers using linear algebra.

M := <<0,1>|<1,1>>;

fib3:= proc(n) option remember;

 (M^(n-1))[2,2]

end proc;

Doing it this way hides the details of the calculation in the inner workings of Maple's linear algebra
machinery (which may be a good thing, because that machinery is usually quite efficient and fast).
Still, it's worthwhile seeing what we can learn from thinking about how these things could be done.
What's an efficient way to calculate the 'th power of a matrix?
The most straightforward way is to multiply that many copies of the matrix together, but that's far
from efficient: to get you would need matrix multiplications. A better idea is called
"repeated squaring". Thus to calculate , we would first calculate , then square that to get ,
then square that to get , then , , and . It only required 6 squarings. To calculate ,
we write 199 as a sum of powers of 2 (this is the base-2 representation of 199):

(2.4)(2.4)

(2.3)(2.3)

(2.2)(2.2)

199 = 1 + 2 + 4 + 64 + 128 so . To calculate this way needs at most
 matrix multiplications.

A convenient way to program it is the following:
mpow:= proc(n)

 option remember;

 if type(n,even)

 then mpow(n/2)^2

 elif type(n,odd)

 then mpow((n-1)/2)^2 . M

 end if;

end proc:

mpow(0) := <<1,0>|<0,1>>:

mpow(1) := M:

mpow(20) = M^20;

mpow(n);

(the symbolic variable n is neither even nor odd, so nothing is returned).
fib4:= n -> mpow(n-1)[2,2];

fib4(300); fib4(300)-fib3(300);
222232244629420445529739893461909967206666939096499764990979600

0

ti:= time():

fib3(10^7):

time()-ti;

fib3(10^7);
6.801

...Integer too large for display...

ti:= time():

fib4(10^7):

time()-ti;
6.864

length(fib4(10^7));
2089877

Fibonacci identities
So far our Fibonacci functions work only for positive integers. I'd like something that works also
for symbolic expressions, e.g. I'd like to be able to get as an expression in terms of and

(3.1)(3.1)

. We can get this by a change in mpow. Note that

M^4;

mpow := proc(n)

 option remember;

 if type(n, posint)

 then if type(n,even)

 then mpow(n/2)^2

 else M . mpow((n-1)/2)^2

 end if

 elif type(n, negint)

 then mpow(-n)^(-1)

 elif type(n,`+`)

 then mpow(op(1,n)) . mpow(n-op(1,n))

 elif type(n,`*`)

 then mpow(n/op(1,n))^op(1,n)

 else <<F[n-1],F[n]>|<F[n],F[n]+F[n-1]>>

 end if

end proc:

mpow(0) := <<1,0>|<0,1>>:

mpow(1) := M:

To describe what this does in words:
 If n is a positive integer, type(n, posint) is true (posint means "positive integer") and mpow will do
what the previous version did.
 If n is a negative integer, type(n, negint) is true (negint means "negative integer"), and mpow will
use .
 If n is a sum of terms, say , op(1,n) will be the first one and n - op(1,n) will be the rest.
Maple will use .
 If n is a product of terms, say , op(1,n) will be the first one and n/op(1,n) will be the rest. Maple
will use . I'll do it this way instead of because integers usually come first in a
product, and I'd rather do

 than .

 If n is none of those (e.g. if it is a name), Maple will return the matrix

.

mpow(2*n);

(3.2)(3.2)

(4.1)(4.1)

(4.3)(4.3)

(4.2)(4.2)

(3.1)(3.1)

mpow(-1)= M^(-1);

fib4(n);
F

fib4(n+3);

fib4(n+m);

This could also be written as . It's an important and useful identity for
Fibonacci numbers.
Where does this come from?

mpow(n), mpow(m), mpow(m+n);

Saving and reading
We've made some complicated definitions that might be useful in other worksheets. You could use
copy-and-paste from this worksheet, but there's a much more convenient way. We can save
the definitions (and values of whatever variables we want) to a text file, and then read this in to
Maple whenever we want to use them. (I'm commenting out this command with # so it won't actually
execute - see below)

save mpow, fib4, M, "fibonacci.txt";

That will create a file named "fibonacci.txt" on your computer containing Maple statements
defining mpow and fib4 and M. It will put it in the "current folder". You can see which one that is
with the currentdir command.

currentdir();
"d:\test"

You can also use currentdir to change to a different folder.
currentdir("d:/m210");

"d:\test"

currentdir();
"d:\m210"

(4.4)(4.4)

(5.3)(5.3)

(5.4)(5.4)

(5.1)(5.1)

(5.2)(5.2)

(3.1)(3.1)

If you prefer a different folder, you can put in the path together with the file name, e.g.
save mpow, fib4, M, "d:/m210/fibonacci.txt";

Note that the forward slash "/" is used instead of the backslash "\".
Then in any Maple session where you want to use these definitions:

read "d:/m210/fibonacci.txt";

Unfortunately there's a bug that causes an incorrect definition of mpow to be saved.
The problem was in the line
else mpow((n-1)/2)^2 . M

where save left out the space between the 2 and the ., which caused Maple to interpret 2. as a
number when read read that line.

FF:= x -> x^2 . M;

save FF, "d:/test/FF.txt";

read "d:/test/FF.txt";

Error, on line 1, syntax error, missing operator or `;`:

FF := x -> x^2.M;

 ^

Error, while reading ``d:/test/FF.txt``

I've put a corrected copy of "fibonacci.txt" (containing these definitions and a few more from the
next couple of lessons) on our web page, so you can download it.

Some Fibonacci puzzles
 was only one of many interesting identities involving the Fibonacci

numbers.
There is a whole journal, the Fibonacci Quarterly, devoted to Fibonacci numbers and related
recurrence relations. Near the back of each issue is a problem section, containing problems at
various levels of difficulty contributed by readers. Many of the problems in the elementary section
can be solved quite readily using mpow and fib. Here are a few examples.
(1) Let be any solution (in integers) of the recurrence . Show that

.
This means that and have the same remainder when divided by 10, i.e. the same last
digit in the decimal representation. Maple has a mod function, which returns the least nonnegative
integer with the same remainder. For example:

37 mod 5;
2

-37 mod 5;
3

It will also work on rational expressions or equations, in which case it operates on the coefficients.
37 * x^23 + 42 mod 5;

((23 * x+17)/(12*x+7) = 23) mod 5;

(3.1)(3.1)

(5.5)(5.5)

23/(5*x+15) mod 5;

Error, the modular inverse does not exist

15/5 mod 5;
3

Maple commands introduced in this lesson:
type(..., odd)
type(..., even)
type(..., posint)
type(..., negint)
save
read
mod

