Lesson 30: Fibonacci numbers

[>»restart;

\ 4

\ 4

Fourier seriesagain

Last time I said I didn't know a nice formula for these integrals, which were coefficients in the

Fourier series of ;.
_ 2 + cos(x)
> J:= 1/Pi * int(cos(k*t)/(2+cos(t)),t=0..2*Pi) assum ng
K:: posint;
2n (k )
cos(kt
L 2 + cos(t) dr
J= 1.1

T

_Well, now I do (and I should have remembered it, because it's a standard Math 300 calculation).

k
2 (V3 -2)
V3
| short for positive integer, rather than just integer: that formula wouldn't work for negative k).
> seq(sinmplify(J-2/sqrt(3)*(sqrt(3)-2)"k), k=0..10);
i 0,0,0,0,0,0,0,0,0,0,0 1.2)

The answer should be for any positive integer k& (that's why I assumed £ is a posint,

| [t's interesting that Maple can do the calculation for any particular & but can't do it in general.

Efficient matrix powers

;Last time we saw a way to calculate Fibonacci numbers using linear algebra.
> M= <<0, 1>| <1, 1>>;
fib3:= proc(n) option renenber
(M(n-1))[2, 2]

end proc;
|01
B
fib3 == proc(n) option remember; (M"(n — 1))[2,2] end proc 2.1)

_Doing it this way hides the details of the calculation in the inner workings of Maple's linear algebra
machinery (which may be a good thing, because that machinery is usually quite efficient and fast).
| Still, it's worthwhile seeing what we can learn from thinking about how these things could be done.

What's an efficient way to calculate the n'th power of a matrix?
The most straightforward way is to multiply that many copies of the matrix together, but that's far
from efficient: to get M" you would need n — 1 matrix multiplications. A better idea is called

"repeated squaring". Thus to calculate M° 4, we would first calculate Mz, then square that to get M ,

then square that to get M®, then M'®, M*?, and M®*. 1t only required 6 squarings. To calculate M 199

we write 199 as a sum of powers of 2 (this is the base-2 representation of 199):




199=1+2+4+64+ 128 so M’ = MM M M®** M'*®. To calculate M this way needs at most
2 log,(n) matrix multiplications.

| A convenient way to program it is the following:
> npow. = proc(n)

option renenber;

if type(n, even)

t hen mpow(n/2) "2

elif type(n, odd)

then npow((n-1)/2)72 . M

end if;
end proc:
npow( 0) : = <<1, 0>| <0, 1>>:
| npow(1l) := M
> nmpow( 20) = M20;
4181 6765 | | 4181 6765
6765 10946 6765 10946
> nmpow(n);

| (the symbolic variable n is neither even nor odd, so nothing is returned).
> fib4d:=n -> nmpowmn-1)[ 2, 2];
fib4 .= n—mpow(n — 1),

> fib4(300); fib4(300)-fib3(300);
222232244629420445529739893461909967206666939096499764990979600

i 0
> ti:=tinme():
fib3(1077):
time()-ti;
fib3(1077);
6.801
i ...Integer too large for display... 2.2)
> ti:=time():
fib4(1077):
time()-ti;
i 6.864 2.3)
> length(fib4(10"7));
2089877 24

V¥ Fibonacci identities

So far our Fibonacci functions work only for positive integers. I'd like something that works also
for symbolic expressions, €.g. I'd like to be able to get /7, | ; as an expression in terms of F, and




n—1 n

F, _ . We can get this by a change in mpow. Note that M'= FoF
n n+1

n
> M4
2 3
35

> npow : = proc(n)
opti on renenber;
i f type(n, posint)
then if type(n, even)
t hen mpow( n/ 2) "2
else M. nmpow(n-1)/2)"2
end if
elif type(n, negint)
t hen nmpow(-n)"(-1)
elif type(n, +)
then mpow(op(1,n)) . npow(n-op(1,n))
elif type(n, *)
then npow(n/op(1,n))”op(1,n)
el se <<F[n-1], F[n]>| <F[ n], F[ n] +F[ n- 1] >>

end if

end proc:

npow( 0) : = <<1, 0>| <0, 1>>:
nmpow(l) := M

To describe what this does in words:

Ifn is a positive integer, type(n, posint) is true (posint means "positive integer") and mpow will do
what the previous version did.

Ifn is a negative integer, type(n, negint) is true (negint means "negative integer"), and mpow will

_ -1

useM "= (M" )

Ifn is a sum of terms, say a + b, op(1,n) will be the first one and n - op(1,n) will be the rest.
Maple will use M* 0 =M* M.

Ifn is a product of terms, say a b, op(1,n) will be the first one and n/op(1,n) will be the rest. Maple

b
will use M4% = (Mb ) a. I'll do it this way instead of (Ma ) because integers usually come first in a
product, and I'd rather do

(M")2 than (Mz)n
n—1 n

F,_,+F

n n

If'n is none of those (e.g. if it is a name), Maple will return the matrix

_>»npmM2*nﬁ




\ 4

F_ +F F, \F,+F, (F,+F, )

n n n

) 3.1)
F, \F,+F,(F,+F,_ ) Fﬁ+(Fn+Fn_1)

> mpow(-1) = M(-1);

11| [ 62

10 10 )
(> fib4(n):

F}’l

[> fiba(n+3):

3F, +2F,
(> fiba(n+n):

FnFm—1+(E1+Fn—l)Fm

[ This could also be written as F wam=—E,F,_1tF, F, It'sanimportant and useful identity for

| Fibonacci numbers.
| Where does this come from?

> nmpow(n), mpow(n), mpow(mn);

Fn—l Fn Fm—l Fm
F, F,+F,_, || F, F,+F, |
F,_,F _ +FF, F, \F,+F,(F,+F, )
F,F, _+(F,+F,_|\)F, F,F,+ (F,+F,_ ) (F,+*F,_))

Saving and reading

We've made some complicated definitions that might be useful in other worksheets. You could use
copy-and-paste from this worksheet, but there's a much more convenient way. We can save

the definitions (and values of whatever variables we want) to a text file, and then read this in to
Maple whenever we want to use them. (I'm commenting out this command with # so it won't actually
execute - see below)

| > # save nmpow, fib4, M "fibonacci.txt";

That will create a file named "fibonacci.txt" on your computer containing Maple statements
defining mpow and fib4 and M. It will put it in the "current folder". You can see which one that is
| with the currentdir command.
> currentdir();

"d:\test" 4.1)

;You can also use currentdir to change to a different folder.

> currentdir("d:/nm10");
"d:\test" 4.2)

> currentdir();

"d:\m210" 4.3)



_If you prefer a different folder, you can put in the path together with the file name, e.g.

| > # save nmpow, fib4, M "d:/nR10/fibonacci.txt";
Note that the forward slash "/" is used instead of the backslash "\".
Then in any Maple session where you want to use these definitions:

| > read "d:/ nR10/fi bonacci.txt";

Unfortunately there's a bug that causes an incorrect definition of mpow to be saved.
The problem was in the line

el se mpow((n-1)/2)"2 . M
where save left out the space between the 2 and the . , which caused Maple to interpret 2. as a
| number when read read that line.
> FF.=x ->x"2 . M
FF:=x—(¥*).M 4.4)

| > save FF, "d:/test/FF. txt";
> read "d:/test/FF.txt";
Error, online 1, syntax error, msSsing operator or
FF := x -> x"2. M

N
[Error, while reading —d:/test/FF. txt ~

I've put a corrected copy of "fibonacci.txt" (containing these definitions and a few more from the
| next couple of lessons) on our web page, so you can download it.

Some Fibonacci puzzles
F

n+m
numbers.

There is a whole journal, the Fibonacci Quarterly, devoted to Fibonacci numbers and related
recurrence relations. Near the back of each issue is a problem section, containing problems at
various levels of difficulty contributed by readers. Many of the problems in the elementary section

| can be solved quite readily using mpow and fib. Here are a few examples.
(1) Let H, be any solution (in integers) of the recurrence H, =H, _ | + H, _,. Show that

TH,=H, s mod 10.
This means that7 H, and H, __ |5 have the same remainder when divided by 10, i.e. the same last

=F,F, _,+F,, F,wasonlyone of many interesting identities involving the Fibonacci

digit in the decimal representation. Maple has a mod function, which returns the least nonnegative
| integer with the same remainder. For example:

> 37 nod 5;

i 2 5.1
> -37 nod 5;

i 3 (5.2)

It will also work on rational expressions or equations, in which case it operates on the coefficients.

> 37 * x"23 + 42 nod 5;

i 2552 42 (5.3)
> ((23 * x+17)/(12*x+7) = 23) nod 5;
3x+2 _3 (5.4)

2x+2



> 23/ (5*x+15) nod 5;
Error. the nodul ar inverse does not exist
[> 15/5 mod 5:

3 (5.5

Y Maple commands introduced in thislesson:

type(..., odd)
type(..., even)
type(..., posint)
type(..., negint)
save

read

mod




