
(1.3)(1.3)

(1.2)(1.2)

(1.1)(1.1)

Lesson 29: Fourier Series and Recurrence
Relations

restart;

Convergence of Fourier series.
We considered the following function on the interval

f:= t -> t^2;

We extended it to be periodic using the following "saw" function
saw:= x -> x - 2*Pi*floor(x/(2*Pi));

fper:= f @ saw;

plot(fper(x), x=-10 .. 10, discont=true);

(1.4)(1.4)

x
0 5 10

10

20

30

The Fourier series of f is where

 and .

a := unapply(1/Pi * int(f(t)*cos(k*t),t=0..2*Pi),k) assuming

k::integer;

a(0):= 1/Pi * int(f(t)*cos(0*t),t=0..2*Pi);

b:= unapply(1/Pi * int(f(t)*sin(k*t),t=0..2*Pi),k) assuming

k::integer;

The theoretical result is that this Fourier series converges to the periodic version fper(x) for every x

(1.5)(1.5)

where fper is continuous,while at points where fper has a jump discontinuity with limits from the left
and right, it converges to the average of those limits. Here is a function that will produce partial
sums.

Psum:= N -> a(0)/2 + add(a(k)*cos(k*x)+b(k)*sin(k*x),k=1..N);

plot([fper(x),Psum(3)], x=-10 .. 10, discont=true, colour=

[blue, red]);

x
0 5 10

10

20

30

plot([fper(x),Psum(30)], x=-10 .. 10, discont=true, colour=

[blue, red]);

(1.6)(1.6)

x
0 5 10

10

20

30

40

The jumps in fper take place at the multiples of , where the partial sum is not terribly far from the
average of the two limits.
Away from the jumps, the partial sum seems pretty close to the function. But something strange
happens near the jumps.

eval(Psum(30),x=0); evalf(%); evalf(limit(fper(x),x=0,left));

19.60807301
39.47841762

It's easier to see by plotting the difference between the function and the partial sum.
with(plots):

display([seq(plot(fper(x)-Psum(N), x=-10 .. 10,y=-1..1,

discont=true), N=1..30)], insequence=true);

(1.7)(1.7)

x
0 5 10

y

1

The fact that the "wiggles" don't go to 0 in magnitude is called the Gibbs phenomenon.
It's typical of a function with jumps that some of the coefficients and go to 0 slowly, only

and the convergence of the partial sums to the function is not very good. With a nice

continuous function it should be better.
f:= x -> (x - Pi)^2;

plot(fper(x),x=-10..10);

(1.8)(1.8)

x
0 5 10

1

2

3

4

5

6

7

8

9

a := unapply(1/Pi * int(f(t)*cos(k*t),t=0..2*Pi),k) assuming

k::integer;

a(0):= 1/Pi * int(f(t)*cos(0*t),t=0..2*Pi);

b:= unapply(1/Pi * int(f(t)*sin(k*t),t=0..2*Pi),k) assuming

k::integer;

Note that in this case and (by symmetry).

plot([fper(x),Psum(3)], x=-10 .. 10, colour=[blue, red]);

x
0 5 10

1

2

3

4

5

6

7

8

9

display([seq(plot(fper(x)-Psum(N), x=-10 .. 10), N=1..30)],

insequence=true);

(1.9)(1.9)

(1.10)(1.10)

x
0 5 10

1

2

The worst places for convergence are still near the multiples of there's no jump there, but there
is a sharp corner: the function is not differentiable there. Basically the more differentiable the
function is the faster the coefficients should go to 0, and the faster the partial sums will converge to
the function. The most differentiable functions are analytic functions.

f:= x -> 1/(2+cos(x));

a := unapply(1/Pi * int(f(t)*cos(k*t),t=0..2*Pi),k) assuming

k::integer;

b := unapply(1/Pi * int(f(t)*sin(k*t),t=0..2*Pi),k) assuming

k::integer;

(1.11)(1.11)

(1.10)(1.10)

(1.13)(1.13)

(1.12)(1.12)

seq(a(k),k=0..5);

seq(b(k),k=0..5);

In this case I don't know if there's a nice formula for the . But according to theory they should be
 for some .

Digits:= 20: A:=[seq(evalf(Int(cos(k*t)/(2+cos(t)), t = 0 ..

2*Pi)/Pi),k=1..30)];

pointplot([seq([n,ln(abs(A[n]))],n=1..30)]);

(1.10)(1.10)

5 10 15 20 25 30

Recurrence Relations
One very useful way to define a sequence is by a recurrence relation, which is an equation
expressing in terms of the for < . For example,

This alone doesn't determine the . You also need an initial condition: for example, a value for .

a[0]:= 1;

for nn from 1 to 6 do

 a[nn] := 2*a[nn-1]

end do;

(1.10)(1.10)

Obviously in this case we'll have for all .

Here's a slightly more complicated relation:

Note that here we need two initial values to determine the sequence.
F[0]:= 0;

F[1]:= 1;

for count from 2 to 10 do

 F[count]:= F[count-1] + F[count-2]

end do;

This is a famous sequence, known as the Fibonacci numbers (recently featured in The DaVinci
Code)
Here's a combinatorial problem where the Fibonacci numbers come up.
Suppose there are Math 210 classes in the term.
You might skip some of the classes, but you don't want to ever miss two consecutive classes. How
many different attendance patterns can you have? e.g. with = 3, here are the 5 possible patterns (0
= skip, 1 = attend):
010, 011, 101, 110, 111.
You can get a recurrence relation this way. Let be the number of patterns for classes. If you
attend the first class, you have possible patterns for the remaining classes. On the
other hand, if you skip the first class, you must attend the second; after that you have
possible patterns for the remaining classes.
So .
The initial conditions are and (or if you don't think should be defined,

). Note that for , 1, 2. By mathematical induction, it's easy to prove

(1.10)(1.10)

 for all positive integers .

Calculating Fibonacci
How can we calculate the Fibonacci numbers? The most straightforward way is with a for loop as
above, that grinds through them one by one.
Here's another way that looks neater. Instead of explicitly calculating for k from 1 to n, get
Maple to do it automatically when needed.

fib1:= n -> fib1(n-1) + fib1(n-2);

fib1(0):= 0; fib1(1):= 1;

This is taking advantage of the remember table to supply the values of fib1(0) and fib1(1) rather than
using the recurrence for them. Don't forget to define those values or you'll get an infinite recursion.
Also don't try fib1(n) where n is not a positive integer.

fib1(6);
8

fib1(-1);

Error, (in fib1) too many levels of recursion

But this is a really terrible way to calculate the Fibonacci numbers, unless n is really small. It keeps
doing the same calculations many times.
Let be the number of steps fib1(n) takes to do the calculation, where each step is either an
addition (according to the recursive formula) or remembering the value of fib1(0) or fib1(1).
This satisfies the recurrence , with and . It
looks rather similar to the Fibonacci recurrence, and the solution is related. We can write the
recurrence relation as

which looks more like Fibonacci. Thus if , satisfies the same recurrence
relation as the Fibonacci numbers. The initial conditions, though, are different: and

. If you notice and , you can see that , so
 . These numbers grow rather rapidly.
A better way would be to have Maple remember the values of each Fibonacci number it calculates.
A Maple procedure will do this if you specify option remember in its definition. You can't use ->
to define such a procedure: instead you use proc:

fib2:= proc(n)

 option remember;

 fib2(n-1)+fib2(n-2);

end proc;

We still need to put the values for 0 and 1 in the remember table.
fib2(0):= 0: fib2(1):= 1:

fib2(300);
222232244629420445529739893461909967206666939096499764990979600

(1.10)(1.10)

To calculate fib2(n), Maple first needs to calculate fib2(n-1), and in the process of doing so it
calculates and remembers fib2(n-2). Once it has fib2(n-1) it needs to add fib2(n-2) but it just
remembers this instead of calculating it again. So the number of calculation steps is something like

.

Fibonacci numbers using linear algebra
Our next method expresses the recurrence relation in terms of vectors and matrices.

Consider the column vector . So also

X(n) = <F[n-1],F[n-2]+F[n-1]>;

This can be written as for a certain matrix :
M := <<0,1>|<1,1>>;

M . <F[n-2],F[n-1]>;

Starting with
X(1) = <0,1>;

we'll have
X(2) = M.<0,1>;

and then . is the second entry of , which is the [2,2] matrix element of

.
fib3:= proc(n) option remember;

 (M^(n-1))[2,2]

end proc;

fib3(300);

fib3(300)-fib2(300);
222232244629420445529739893461909967206666939096499764990979600

(1.10)(1.10)

0

Maple objects introduced in this lesson:

option remember

