Lesson 25: Solving equations using series

[> restart;

Example 2: A series for an implicit function

Find the Taylor series for $y(x)$ about $x=0$ (up to the x^{6} term), if $y=y(x)$ satisfies the equation $=(1+x) \mathrm{e}^{y}-y^{2} \mathrm{e}^{x}=1+x^{2} y$ with $y(0)=0$.
LLast time we saw that a version of Newton's method can be used.
$>\mathrm{eq}:=(1+\mathrm{x}) * \exp (\mathrm{y})-\mathrm{y}^{\wedge} \mathbf{2}^{*} \exp (\mathrm{x})=1+\mathrm{x}^{\wedge} \mathbf{2}^{*} \mathrm{y}$;

$$
\begin{equation*}
e q:=(1+x) \mathrm{e}^{y}-y^{2} \mathrm{e}^{x}=1+x^{2} y \tag{1.1}
\end{equation*}
$$

$>\mathrm{f}:=$ unapply(lhs (eq) -rhs (eq), (x, y));

$$
f:=(x, y) \rightarrow(1+x) \mathrm{e}^{y}-y^{2} \mathrm{e}^{x}-1-x^{2} y
$$

$>$ newt: $=(\mathrm{y}, \mathrm{n})$-> convert (normal (taylor $(\mathrm{y}-\mathrm{f}(\mathrm{x}, \mathrm{y}) / \mathrm{D}[2](\mathrm{f})(\mathrm{x}, \mathrm{y})$, x, n)), polynom) ;

$$
\text { newt }:=(y, n) \rightarrow \text { convert }\left(\text { normal }\left(\operatorname{taylor}\left(y-\frac{f(x, y)}{\mathrm{D}_{2}(f)(x, y)}, x, n\right)\right), \text { polynom }\right)
$$

$>y 1:=$ newt $(0,2)$;

$$
y 1:=-x
$$

[$>y^{2}:=$ newt $(y 1,4)$;

$$
y 2:=-x+\frac{3}{2} x^{2}-\frac{10}{3} x^{3}
$$

If $f\left(x, y_{k}\right)=\mathrm{O}\left(x^{k}\right)$ and $\frac{\partial}{\partial y} f\left(x, y_{k}\right)$ has a nonzero limit as $x \rightarrow 0$, then $f\left(x, y_{k+1}\right)=\mathrm{O}\left(x^{2 k}\right)$ where $y_{k+1}=y_{k}-\frac{f\left(x, y_{k}\right)}{\frac{\partial}{\partial y} f\left(x, y_{k}\right)}$.
In other words, once you get an approximation that works to a certain order $\mathrm{O}\left(x^{k}\right)$, each application of Newton's method will at least double the order of approximation.

$$
\begin{aligned}
>y^{3} & :=\text { newt }(y 2,8) ; \\
& y 3:=-x+\frac{3}{2} x^{2}-\frac{10}{3} x^{3}+\frac{23}{3} x^{4}-\frac{1097}{60} x^{5}+\frac{8117}{180} x^{6}-\frac{285673}{2520} x^{7}
\end{aligned}
$$

[Notice that the terms in x, x^{2}, x^{3} are the same as in $y 2$.

$$
\left[\begin{array}{rl}
> & y^{4}:=\text { newt }\left(y^{3}, 16\right) ; \\
y 4: & -x+\frac{3}{2} x^{2}-\frac{10}{3} x^{3}+\frac{23}{3} x^{4}-\frac{1097}{60} x^{5}+\frac{8117}{180} x^{6}-\frac{285673}{2520} x^{7}+\frac{242153}{840} x^{8} \\
& -\frac{1061687}{1440} x^{9}+\frac{1141506817}{604800} x^{10}-\frac{48062135701}{9979200} x^{11}+\frac{974043196177}{79833600} x^{12} \\
& -\frac{95110784043697}{3113510400} x^{13}+\frac{546125185861933}{7264857600} x^{14}-\frac{16853821021600523}{93405312000} x^{15}
\end{array}\right.
$$

I'll switch to using floating-point (by sticking in an evalf), because some of these coefficients are starting to involve rational numbers with big numerators and denominators.

$$
\begin{aligned}
> & y^{5}:=\text { newt }\left(\text { evalf }\left(y^{4}\right),\right. \text { 32); } \\
y 5: & -1 . x+1.500000000 x^{2}-3.333333333 x^{3}+7.666666663 x^{4}-18.28333333 x^{5} \\
& +45.09444446 x^{6}-113.3623015 x^{7}+288.2773811 x^{8}-737.2826390 x^{9} \\
& +1887.412065 x^{10}-4816.231328 x^{11}+12200.91789 x^{12}-30547.76497 x^{13} \\
& +75173.55676 x^{14}-1.80437499510^{5} x^{15}+4.17469953410^{5} x^{16} \\
& -9.11849273810^{5} x^{17}+1.80005123410^{6} x^{18}-2.83844811610^{6} x^{19} \\
& +1.53652108810^{6} x^{20}+1.42652587310^{7} x^{21}-9.33547593310^{7} x^{22} \\
& +4.13811446710^{8} x^{23}-1.58956138010^{9} x^{24}+5.65572066110^{9} x^{25} \\
& -1.91629753010^{10} x^{26}+6.27048244510^{10} x^{27}-1.99737400110^{11} x^{28} \\
& +6.22336582810^{11} x^{29}-1.90234162210^{12} x^{30}+5.71512002910^{12} x^{31}
\end{aligned}
$$

[This polynomial might not be sorted in order of the exponents. We can use sort to fix this.

$$
\begin{align*}
& >\text { sort }(\mathrm{y} 5, \mathrm{x}, \text { ascending); } \\
& -1 . x+1.500000000 x^{2}-3.333333333 x^{3}+7.666666663 x^{4}-18.28333333 x^{5} \tag{1.2}\\
& \quad+45.09444446 x^{6}-113.3623015 x^{7}+288.2773811 x^{8}-737.2826390 x^{9} \\
& \quad+1887.412065 x^{10}-4816.231328 x^{11}+12200.91789 x^{12}-30547.76497 x^{13} \\
& \quad+75173.55676 x^{14}-1.80437499510^{5} x^{15}+4.17469953410^{5} x^{16} \\
& \quad-9.11849273810^{5} x^{17}+1.80005123410^{6} x^{18}-2.83844811610^{6} x^{19} \\
& \quad+1.53652108810^{6} x^{20}+1.42652587310^{7} x^{21}-9.33547593310^{7} x^{22} \\
& \quad+4.13811446710^{8} x^{23}-1.58956138010^{9} x^{24}+5.65572066110^{9} x^{25} \\
& \quad-1.91629753010^{10} x^{26}+6.27048244510^{10} x^{27}-1.99737400110^{11} x^{28} \\
& \\
& +6.22336582810^{11} x^{29}-1.90234162210^{12} x^{30}+5.71512002910^{12} x^{31}
\end{align*}
$$

$$
\lceil>y 6:=\text { sort (newt (evalf }(y 5), 64), x, \text { ascending) ; }
$$

$$
y 6:=-1 . x+1.500000000 x^{2}-3.333333333 x^{3}+7.666666669 x^{4}-18.28333332 x^{5}
$$

$+45.09444442 x^{6}-113.3623018 x^{7}+288.2773810 x^{8}-737.2826395 x^{9}$

$$
+1887.412065 x^{10}-4816.231337 x^{11}+12200.91784 x^{12}-30547.76496 x^{13}
$$

$$
+75173.55700 x^{14}-1.80437500110^{5} x^{15}+4.17469956710^{5} x^{16}
$$

$$
-9.11849279610^{5} x^{17}+1.80005125310^{6} x^{18}-2.83844816510^{6} x^{19}
$$

$$
+1.53652133210^{6} x^{20}+1.42652584710^{7} x^{21}-9.33547582810^{7} x^{22}
$$

$$
+4.13811443510^{8} x^{23}-1.58956137210^{9} x^{24}+5.65572064210^{9} x^{25}
$$

$$
-1.91629752310^{10} x^{26}+6.27048242610^{10} x^{27}-1.99737400410^{11} x^{28}
$$

$$
+6.22336583710^{11} x^{29}-1.90234163310^{12} x^{30}+5.71512003310^{12} x^{31}
$$

$$
-1.68906200010^{13} x^{32}+4.91206317210^{13} x^{33}-1.40515149010^{14} x^{34}
$$

$$
+3.94980823210^{14} x^{35}-1.08898217610^{15} x^{36}+2.93607313510^{15} x^{37}
$$

$$
-7.70505513910^{15} x^{38}+1.95318746010^{16} x^{39}-4.72037702210^{16} x^{40}
$$

$$
+1.06060259010^{17} x^{41}-2.09071518110^{17} x^{42}+2.97531296610^{17} x^{43}
$$

$$
\begin{aligned}
& +8.8649516410^{16} x^{44}-3.14265800410^{18} x^{45}+1.77308431610^{19} x^{46} \\
& -7.67591923310^{19} x^{47}+2.95939880510^{20} x^{48}-1.06690212010^{21} x^{49} \\
& +3.67670622010^{21} x^{50}-1.22545865810^{22} x^{51}+3.97764305010^{22} x^{52} \\
& -1.26264407110^{23} x^{53}+3.93021931210^{23} x^{54}-1.20151202310^{24} x^{55} \\
& +3.61052944810^{24} x^{56}-1.06664013210^{25} x^{57}+3.09649703410^{25} x^{58} \\
& -8.82329639910^{25} x^{59}+2.46276306510^{26} x^{60}-6.71176378110^{26} x^{61} \\
& +1.77676327410^{27} x^{62}-4.53017672710^{27} x^{63}
\end{aligned}
$$

Here's an animation with polynomials of degrees up to 63 , showing how well this converges to a solution.
with (plots) :
P0:= implicitplot ($\mathrm{f}(\mathrm{x}, \mathrm{y})$, $\mathrm{x}=-0.5$.. 0.5, $\mathrm{y}=-1$.. 2,colour= blue) :
for j from 1 to 63 do
frame[j]:= display([P0, plot (convert (taylor (y6, x, j+1),
polynom), $x=-0.5 .0 .5)]$, title=('Degree'=j), view=[-0.5..0.5, -1.
.2])
end do:
display ([seq(frame[j], j=1..63)], insequence=true);

What's the radius of convergence? From the pictures, I'd guess it's a bit more than 0.3.
The theoretical result is that $\frac{1}{R}=\lim \sup _{n \rightarrow \infty}\left(\left|a_{n}\right|^{\frac{1}{n}}\right)$.
$\left[\begin{array}{l}\text { That means (in the case where } \mathrm{R} \text { is finite and nonzero) that for every } \varepsilon>0, \\ \text { sufficiently large, but there exist arbitrarily large } n \text { with } \frac{1}{R}-\varepsilon<\left|a_{n}\right|^{\frac{1}{n}} .\end{array}\right.$
$\gg \mathrm{L}:=\left[\operatorname{seq}\left(\left[n, \operatorname{evalf}\left(\operatorname{abs}(\operatorname{coeff}(\mathrm{y} 6, \mathrm{x}, \mathrm{n}))^{\wedge}(1 / \mathrm{n})\right)\right], \mathrm{n}=1 \ldots 63\right)\right]$;
$L:=[[1,1],.[2,1.224744871],[3,1.493801582],[4,1.663993576],[5,1.788179350]$,
[6, 1.886631900], [7, 1.965601714], [8, 2.029907840], [9, 2.082696566], [10, 2.126114614], [11, 2.161680855], [12, 2.190446794], [13, 2.213086651], [14, 2.229925554], [15, 2.240896441], [16, 2.245376002], [17, 2.241732093], [18, 2.225952159], [19, 2.185927936], [20, 2.038576107], [21, 2.191189727], [22, 2.302920416], [23, 2.369428385], [24, 2.417611730], [25, 2.455271473], [26, 2.485875326], [27, 2.511308319], [28, 2.532723823], [29, 2.550882936], [30, 2.566312960], [31, 2.579389615], [32, 2.590382663], [33, 2.599481830], [34,
2.606810757], [35, 2.612432205], [36, 2.616345063], [37, 2.618470909], [38, 2.618623410], [39, 2.616443631], [40, 2.611255797], [41, 2.601700992], [42, 2.584568061], [43, 2.548949460], [44, 2.427585099], [45, 2.576623997], [46, 2.620901135], [47, 2.649036125], [48, 2.669828754], [49, 2.686243636], [50, 2.699660664], [51, 2.710840063], [52, 2.720246052], [53, 2.728181285], [54, 2.734850837], [55, 2.740395455], [56, 2.744909635], [57, 2.748451222], [58, 2.751045480], [59, 2.752684614], [60, 2.753322247], [61, 2.752860521], [62, 2.751123929], [63, 2.747805286]]

It looks plausible (with a little imagination) that the lim sup is around 3, which would correspond to a radius of about 0.3.
Here's a different (possibly better) way to do it: $\operatorname{plot} \ln \left(\left|a_{n}\right|\right)$. The idea here is that if $R>r$, then $\left|a_{n}\right|<c r^{-n}$ for some constant c, so $\ln \left(\left|a_{n}\right|\right)<\ln (c)-n \ln (r)$. Thus in this plot, every point should be below a straight line with slope $-\ln (r)$. The radius of convergence R is e^{-m} where m is the minimum slope such that all points are below a line of slope m.
$[>\operatorname{L2}:=[\operatorname{seq}([n, \operatorname{evalf}(\ln (\operatorname{abs}(\operatorname{coeff}(y 6, x, n))))], n=1 \ldots 63)]:$

$$
\begin{equation*}
R:=0.3379877040 \tag{1.5}
\end{equation*}
$$

By the way, here's another way to get the series.
> solve (eq, y);

$$
\begin{equation*}
\operatorname{RootOf}\left(-\mathrm{e}^{Z}-\mathrm{e}^{Z} x+1+Z^{2} \mathrm{e}^{x}+x^{2} _Z\right) \tag{1.6}
\end{equation*}
$$

$>$ taylor (\%, x, 10) ;
$-x+\frac{3}{2} x^{2}-\frac{10}{3} x^{3}+\frac{23}{3} x^{4}-\frac{1097}{60} x^{5}+\frac{8117}{180} x^{6}-\frac{285673}{2520} x^{7}+\frac{242153}{840} x^{8}$
$-\frac{1061687}{1440} x^{9}+\mathrm{O}\left(x^{10}\right)$
$>$ taylor $\left(\% \%-y^{4}, x, 16\right)$;

$$
\begin{equation*}
\mathrm{O}\left(x^{16}\right) \tag{1.8}
\end{equation*}
$$

There's something slightly fishy about this:
where did I tell Maple that I wanted the solution with $y(0)=0$?
I didn't. Now it just happens that the only real solution at $x=0$ is $y=0$. But for equations that don't
have that property, you might not know which solution you'll get by this method. For example, the next example has two solutions at $x=0: y=1$ and $y=-1$.

$$
\begin{align*}
& >\text { eq2:= } \begin{aligned}
& \mathrm{y}^{\wedge} 2+\mathrm{x} \exp (\mathrm{y})=1 ; \\
&= \text { eq } 2:=y^{2}+\mathrm{e}^{y} x=1 \\
&> \text { solve }(\mathrm{eq} 2, \mathrm{y}) ; \quad \\
&= \operatorname{RootOf}\left(\mathrm{e}^{Z} x+Z^{2}-1\right) \\
&> \text { taylor }(\%, \mathrm{x}, 10) ; \quad \\
&-1+\frac{1}{2} \mathrm{e}^{-1} x+\frac{3}{8} \mathrm{e}^{-2} x^{2}+\frac{7}{16} \mathrm{e}^{-3} x^{3}+\frac{235}{384} \mathrm{e}^{-4} x^{4}+\frac{121}{128} \mathrm{e}^{-5} x^{5}+\frac{7959}{5120} \mathrm{e}^{-6} x^{6} \\
&+\frac{245953}{92160} \mathrm{e}^{-7} x^{7}+\frac{5422687}{1146880} \mathrm{e}^{-8} x^{8}+\frac{3936241}{458752} \mathrm{e}^{-9} x^{9}+\mathrm{O}\left(x^{10}\right)
\end{aligned}
\end{align*}
$$

I get the solution with $y(0)=-1$, but I wouldn't have known this ahead of time. If I want the solution with $y(0)=1$, I could put an extra argument on the RootOf that says what the solution should be at $x=0$.

$$
\begin{align*}
& \left.>\text { taylor (RootOf }\left(\exp \left(_Z\right) * \mathbf{x}+\mathrm{z}^{\wedge} 2-1,1\right), \mathbf{x}, 10\right) ; \\
& 1-\frac{1}{2} \mathrm{e} x+\frac{1}{8} \mathrm{e}^{2} x^{2}-\frac{1}{16} \mathrm{e}^{3} x^{3}+\frac{13}{384} \mathrm{e}^{4} x^{4}-\frac{1}{48} \mathrm{e}^{5} x^{5}+\frac{69}{5120} \mathrm{e}^{6} x^{6}-\frac{841}{92160} \mathrm{e}^{7} x^{7} \tag{1.12}\\
& \quad+\frac{65689}{10321920} \mathrm{e}^{8} x^{8}-\frac{10427}{2293760} \mathrm{e}^{9} x^{9}+\mathrm{O}\left(x^{10}\right)
\end{align*}
$$

From series to function

So far we've had a function and wanted to know its Taylor series. Now suppose you know the series but you want to identify the function. Maple might be able to do it with sum, if you know a formula for the coefficients.

$$
\begin{aligned}
& >\operatorname{sum}\left(\mathrm{k} /(\mathrm{k}+1) *_{\mathbf{x} \wedge}{ }^{\wedge}, \mathrm{k}=0 \ldots \text { infinity }\right) ; \\
& \frac{1}{2} x\left(-\frac{2}{x(x-1)}+\frac{2 \ln (1-x)}{x^{2}}\right)
\end{aligned}
$$

It's pretty good at doing sums.
$>\operatorname{sum}\left(((1+k)!)^{\wedge} 2 /(1+2 * k)!x^{\wedge} k, k=0\right.$..infinity $) ;$

$$
\frac{3}{4\left(\frac{1}{4} x-1\right)^{2}}+\frac{1}{2} \frac{\left(-1-\frac{1}{2} x\right) \sqrt{1-\frac{1}{4} x} \arcsin \left(\frac{1}{2} \sqrt{x}\right)}{\left(\frac{1}{4} x-1\right)^{3} \sqrt{x}}
$$

$>\operatorname{sum}\left((2 * k+1)^{\wedge} 2 /(k!)^{\wedge} 2 * \mathbf{x}^{\wedge} k, k=0\right.$..infinity);

$$
\operatorname{BesselI}(0,2 \sqrt{x})+4 \sqrt{x} \operatorname{BesselI}(1,2 \sqrt{x})+4 x \operatorname{BesselI}(0,2 \sqrt{x})
$$

[Of course, sometimes there's no "closed form" formula.
$>\operatorname{sum}\left(x^{\wedge} k /\left(1+2^{\wedge} k\right), k=0 \ldots\right.$ infinity $)$;

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{1+2^{k}}
$$

But suppose you only know a finite number of terms of the series. Is there any hope? Theoretically, no: the series could continue in all sorts of ways, e.g. the coefficients might all be 0 from this point
on. But Maple might be able to "guess" how it continues. The appropriate function is guessgf in the gfun package. Here's a list of numbers.
$>\mathrm{L}:=[1 / 2,1 / 4,1 / 6,1 / 8,1 / 10]$;

$$
L:=\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}\right]
$$

What's a likely function whose Maclaurin series is $L_{1}+L_{2} x+L_{3} x^{2}+\ldots$?
[$>$ with (gfun):
$>$ guessgf(L, x, [ogf]);

$$
\left[-\frac{1}{2} \frac{\ln (1-x)}{x}, o g f\right]
$$

$>$ taylor (\%[1], x, 20);
$\frac{1}{2}+\frac{1}{4} x+\frac{1}{6} x^{2}+\frac{1}{8} x^{3}+\frac{1}{10} x^{4}+\frac{1}{12} x^{5}+\frac{1}{14} x^{6}+\frac{1}{16} x^{7}+\frac{1}{18} x^{8}+\frac{1}{20} x^{9}$
$+\frac{1}{22} x^{10}+\frac{1}{24} x^{11}+\frac{1}{26} x^{12}+\frac{1}{28} x^{13}+\frac{1}{30} x^{14}+\frac{1}{32} x^{15}+\frac{1}{34} x^{16}+\frac{1}{36} x^{17}$
$+\frac{1}{38} x^{18}+\mathrm{O}\left(x^{19}\right)$
$>$ convert (\% [1],FormalPowerSeries, x);

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{x^{k}}{2 k+2} \tag{2.1}
\end{equation*}
$$

[That was easy. Here's one that's not quite so obvious.
$>$ guessgf([1,2,4,7,11,16,22],x,[ogf]);

$$
\left[\frac{-1+x-x^{2}}{(x-1)^{3}}, \text { og } f\right]
$$

$>$ taylor (\% [1], $x, 8$);

$$
1+2 x+4 x^{2}+7 x^{3}+11 x^{4}+16 x^{5}+22 x^{6}+29 x^{7}+\mathrm{O}\left(x^{8}\right)
$$

$>$ convert (\% [1],FormalPowerSeries, x);

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(1+\frac{1}{2} k+\frac{1}{2} k^{2}\right) x^{k} \tag{2.2}
\end{equation*}
$$

The ogf stands for "ordinary generating function". A function $f(x)$ is the ordinary generating function of the sequence $c_{0}, c_{1}, c_{2}, \ldots$ if that sequence is the sequence of Maclaurin series coefficients of $f(x)$, i.e. $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$
There's also egf or "exponential generating function", for a function whose coefficients are $\frac{L_{1}}{0!}$, $\frac{L_{2}}{1!}, \frac{L_{3}}{2!}, \ldots$. That's not as useful for us here.
Also in the package is listtoalgeq, which would find a polynomial equation in x and y satisfied when y is the series with coefficients given by the list. It wouldn't work for our first implicit example, because the equation there involved exponentials. But try this one:
$\mathrm{x}^{2} y-x y^{3}+y-1=0$ with $y(0)=1$.
$>\mathbf{f}:=(\mathbf{x}, \mathrm{y})$-> $\mathbf{x}^{\wedge} \mathbf{2}^{*} \mathbf{y}-\mathbf{x}^{\star} \mathbf{y}^{\wedge} \mathbf{3}+\mathbf{y}-1$;

$$
f:=(x, y) \rightarrow x^{2} y-x y^{3}+y-1
$$

Note that $f(0,1)=0$. I'll use the Newton's method trick to find the Taylor series of the solution $y(x)$ about $x=0$, then see if listtoalgeq will find the equation that $y(x)$ satisfies.
$>$ newt: $=(\mathrm{y}, \mathrm{n}) \rightarrow$ convert (normal (taylor $(\mathrm{y}-\mathrm{f}(\mathrm{x}, \mathrm{y}) / \mathrm{D}[2](\mathrm{f})(\mathrm{x}, \mathrm{y})$, $x=0, n)$), polynom) ;
newt $:=(y, n) \rightarrow$ convert $\left(\right.$ normal $\left(\right.$ taylor $\left.\left(y-\frac{f(x, y)}{\mathrm{D}_{2}(f)(x, y)}, x=0, n\right)\right)$, polynom $)$
$>\mathrm{Y}[0]:=1$;
for j from 1 to 5 do
Y[j] := newt (Y[j-1], $\left.\mathbf{2}^{\wedge}{ }^{\text {j }}\right)$
end do;

$$
Y_{0}:=1
$$

$$
Y_{1}:=1+x
$$

$$
Y_{2}:=1+x+2 x^{2}+8 x^{3}
$$

$$
Y_{3}:=1+x+2 x^{2}+8 x^{3}+35 x^{4}+163 x^{5}+796 x^{6}+4024 x^{7}
$$

$$
Y_{4}:=1+x+2 x^{2}+8 x^{3}+35 x^{4}+163 x^{5}+796 x^{6}+4024 x^{7}+20885 x^{8}+110654 x^{9}
$$

$$
+596064 x^{10}+3254752 x^{11}+17974893 x^{12}+100227022 x^{13}+563482140 x^{14}
$$

$$
+3190633232 x^{15}
$$

$$
Y_{5}:=1+x+2 x^{2}+8 x^{3}+35 x^{4}+163 x^{5}+796 x^{6}+4024 x^{7}+20885 x^{8}+110654 x^{9}
$$

$$
+596064 x^{10}+3254752 x^{11}+17974893 x^{12}+100227022 x^{13}+563482140 x^{14}
$$

$$
+3190633232 x^{15}+18179765509 x^{16}+104158703503 x^{17}+599698459613 x^{18}
$$

$$
+3467978715612 x^{19}+20134256546896 x^{20}+117313279477959 x^{21}
$$

$$
+685756774642494 x^{22}+4020515276730588 x^{23}+23636036336651811 x^{24}
$$

$$
+139301059260764048 x^{25}+822881759633309667 x^{26}+4871350637075703196 x^{27}
$$

$$
+28895082181969536230 x^{28}+171712367070082813220 x^{29}
$$

$$
+1022183276503900838428 x^{30}+6094767743827565180092 x^{31}
$$

[Can Maple take the list of coefficients and get the equation?
$[>\mathrm{L}:=[\operatorname{seq}(\operatorname{coeff}(Y[5], x, j), j=0.31)]$;
$L:=[1,1,2,8,35,163,796,4024,20885,110654,596064,3254752,17974893$, 100227022, 563482140, 3190633232, 18179765509, 104158703503, 599698459613, 3467978715612, 20134256546896, 117313279477959, 685756774642494, 4020515276730588, 23636036336651811, 139301059260764048, 822881759633309667, 4871350637075703196, 28895082181969536230, 171712367070082813220, 1022183276503900838428, 6094767743827565180092]
$>$ listtoalgeq(L,y(x));

$$
\left[1+\left(-1-x^{2}\right) y(x)+x y(x)^{3}, o g f\right]
$$

The first element here is equivalent to our $f(x, y(x))$ (well, actually it's $-f(x, y(x))$).
$>\%[1]+f(x, y(x)) ;$

$$
\left(-1-x^{2}\right) y(x)+x^{2} y(x)+y(x)
$$

$>$ expand (\%);

$$
\begin{equation*}
0 \tag{2.3}
\end{equation*}
$$

$>$ convert (RootOf(f(x,y),y),FormalPowerSeries, x);

$$
\begin{equation*}
\operatorname{RootOf}\left(1+x_{-} Z^{3}+\left(-1-x^{2}\right) _Z\right) \tag{2.4}
\end{equation*}
$$

By the way, there's another interesting method of identifying a sequence of integers: the
Encyclopedia of Integer Sequences. For example, what about the sequence 1, 1, 3, 15, 108, 1032, _12388, ...?
Look it up at http://www.research.att.com/~njas/sequences/index.html

A functional equation

The Encyclopedia of Integer Sequences says the ordinary generating function of sequence A090351 (i.e. the function whose Maclaurin series is that sequence) satisfies the equation
$\left[A(x)^{3}=\frac{A\left(\frac{x}{1-x}\right)^{2}}{1-x}\right.$
That's called a functional equation: an equation involving values of an unknown function at different points. Can we use Maple to solve it, recovering the sequence?

$$
\begin{array}{r}
>\mathrm{eq}:=\mathbf{A}(\mathbf{x})^{\wedge} \mathbf{3}=\mathbf{A}(\mathbf{x} /(1-\mathbf{x}))^{\wedge} 2 /(1-\mathbf{x}) ; \\
e q:=A(x)^{3}=\frac{A\left(\frac{x}{1-x}\right)^{2}}{1-x}
\end{array}
$$

Note that for $x=0$ we get
$>$ eval (eq, $x=0$);

$$
A(0)^{3}=A(0)^{2}
$$

[so $\mathrm{A}(0)=0$ or 1 . The one we want is 1 .

$$
\begin{aligned}
& >\text { Aseries : }=\text { unapply }\left(1+\operatorname{add}\left(a[j] * x^{\wedge} j, j=1 \ldots 20\right), \quad \mathbf{x}\right) ; \\
& \text { Aseries }:=x \rightarrow 1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8}+a_{9} x^{9} \\
& \quad+a_{10} x^{10}+a_{11} x^{11}+a_{12} x^{12}+a_{13} x^{13}+a_{14} x^{14}+a_{15} x^{15}+a_{16} x^{16}+a_{17} x^{17}+a_{18} x^{18} \\
& \quad+a_{19} x^{19}+a_{20} x^{20}
\end{aligned}
$$

The fact that $\frac{x}{1-x}=0$ when $x=0$ makes it possible to substitute this series in to the equation.

$$
\begin{aligned}
& >\text { eval (eq, } \mathbf{A}=\text { Aseries) ; } \\
& \begin{array}{l}
\left(1+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8}+a_{9} x^{9}+a_{10} x^{10}+a_{11} x^{11}\right. \\
\quad+a_{12} x^{12}+a_{13} x^{13}+a_{14} x^{14}+a_{15} x^{15}+a_{16} x^{16}+a_{17} x^{17}+a_{18} x^{18}+a_{19} x^{19} \\
\left.\quad+a_{20} x^{20}\right)^{3}=\frac{1}{1-x}\left(1+\frac{a_{1} x}{1-x}+\frac{a_{2} x^{2}}{(1-x)^{2}}+\frac{a_{3} x^{3}}{(1-x)^{3}}+\frac{a_{4} x^{4}}{(1-x)^{4}}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{a_{5} x^{5}}{(1-x)^{5}}+\frac{a_{6} x^{6}}{(1-x)^{6}}+\frac{a_{7} x^{7}}{(1-x)^{7}}+\frac{a_{8} x^{8}}{(1-x)^{8}}+\frac{a_{9} x^{9}}{(1-x)^{9}}+\frac{a_{10} x^{10}}{(1-x)^{10}} \\
& +\frac{a_{11} x^{11}}{(1-x)^{11}}+\frac{a_{12} x^{12}}{(1-x)^{12}}+\frac{a_{13} x^{13}}{(1-x)^{13}}+\frac{a_{14} x^{14}}{(1-x)^{14}}+\frac{a_{15} x^{15}}{(1-x)^{15}}+\frac{a_{16} x^{16}}{(1-x)^{16}} \\
& \left.+\frac{a_{17} x^{17}}{(1-x)^{17}}+\frac{a_{18} x^{18}}{(1-x)^{18}}+\frac{a_{19} x^{19}}{(1-x)^{19}}+\frac{a_{20} x^{20}}{(1-x)^{20}}\right)^{2}
\end{aligned}
$$

In the PDF version of this lesson, I'll use a colon on the next two commands, so those who print them out don't waste a lot of paper and ink.

$$
\begin{aligned}
{[>} & \text { taylor }(\operatorname{lhs}(\%)-\operatorname{rhs}(\%), \mathbf{x}, 21): \\
{[>} & \text { eqs: }=\{\text { seq }(\operatorname{coeff}(\%, \mathbf{x}, \mathbf{j}), \mathbf{j}=0 . .20)\}: \\
> & \text { s: solve }:=\left\{a_{1}=1, a_{2}=3, a_{3}=15, a_{4}=108, a_{5}=1032, a_{6}=12388, a_{7}=179572, a_{8}=3052986, a_{9}\right. \\
& =59555338, a_{10}=1310677726, a_{11}=32114051862, a_{12}=866766965308, a_{13} \\
& =25547102523604, a_{14}=816335926158372, a_{15}=28107705687291892, a_{16} \\
& =103736735112078851, a_{17}=40852168787823027351, a_{18} \\
& =1709792654612819858341, a_{19}=75786181910268208068217, a_{20} \\
& =3546463856783571869500968\}
\end{aligned}
$$

These numbers get large rather quickly. It's not at all obvious that the radius of convergence of the series would be positive.
$>$ [seq([n, evalf(eval (a[n],S)^(1/n))],n=1..19)];
[[1, 1.], [2, 1.732050808], [3, 2.466212074], [4, 3.223709795], [5, 4.006230560], [6, 4.810241337], [7, 5.631259190], [8, 6.465328582], [9, 7.309372199], [10, 8.161116771], [11, 9.018910982], [12, 9.881552808], [13, 10.74815630], [14, 11.61805675], [15, 12.49074550], [16, 13.36582547], [17, 14.24298081], [18, 15.12195597], [19, 16.00254101]]
$>$ with(plots):
pointplot ($\% \%$) ;

It looks like $\lim _{n \rightarrow \infty} a_{n}^{\left(\frac{1}{n}\right)}=\infty$, so the radius of convergence is 0 .

Maple objects introduced in this lesson

gfun package
guessgf (in gfun)
listtoalgeq (in gfun)

