Lesson 24: Taylor series

[> restart;

Finding Taylor series

As we saw last time, Maple has the taylor command to find a given number of terms of a Taylor series of an expression.

$$
\begin{align*}
& >\operatorname{taylor}\left((\exp (\mathbf{x})-1-\mathbf{x}) / \mathrm{x}^{\wedge} 2, \mathbf{x}\right) ; \\
& \qquad \frac{1}{2}+\frac{1}{6} x+\frac{1}{24} x^{2}+\frac{1}{120} x^{3}+\mathrm{O}\left(x^{4}\right) \tag{1.1}
\end{align*}
$$

But what if instead of the first few terms of the series, you want a formula for the whole series? This isn't always going to work, but sometimes it will:
$>$ convert ($(\exp (x)-1-x) / x^{\wedge} 2$, FormalPowerSeries, $\left.x\right)$;

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{x^{k}}{(k+2)!} \tag{1.2}
\end{equation*}
$$

$>$ value (\%);

$$
\begin{equation*}
\frac{\mathrm{e}^{x}-1-x}{x^{2}} \tag{1.3}
\end{equation*}
$$

If you want a series about some other point, say $x=a$:
$>$ convert (exp(x), FormalPowerSeries, $x=a$);

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\mathrm{e}^{a}(x-a)^{k}}{k!} \tag{1.4}
\end{equation*}
$$

$>$ convert (exp $\left(x+x^{\wedge} 2\right)$, FormalPowerSeries, x);

$$
\begin{equation*}
\mathrm{e}^{x+x^{2}} \tag{1.5}
\end{equation*}
$$

Maple doesn't know a formula for the coefficients of the Maclaurin series of $\mathrm{e}^{x+x^{2}}$. Well, there isn't a very nice formula for them, as far as I know.

$$
\begin{align*}
& >\text { taylor }\left(\exp \left(\mathbf{x}+\mathbf{x}^{\wedge} 2\right), \mathbf{x}, 10\right) ; \\
& 1+x+\frac{3}{2} x^{2}+\frac{7}{6} x^{3}+\frac{25}{24} x^{4}+\frac{27}{40} x^{5}+\frac{331}{720} x^{6}+\frac{1303}{5040} x^{7}+\frac{1979}{13440} x^{8}+\frac{5357}{72576} x^{9} \tag{1.6}\\
& \quad+\mathrm{O}\left(x^{10}\right)
\end{align*}
$$

Convergence of Taylor series

Let's look at the Maclaurin series for the function e^{x} and its convergence to e^{x}. It's convenient to define a function that will calculate the n'th degree Maclaurin polynomial at a given point.
$>P:=(n, t) \rightarrow$ eval (convert (taylor (exp (x), $x=0, n+1)$, polynom), $x=t$);

$$
P:=(n, t) \rightarrow \text { convert }\left.\left(\text { taylor }\left(\mathrm{e}^{x}, x=0,1+n\right), \text { polynom }\right)\right|_{x=t}
$$

Especially for $x>0$, it's more informative to look at the difference between e^{x} and the Maclaurin polynomial.
$>\operatorname{plot}([\operatorname{seq}(\exp (x)-P(n, x), n=1 \ldots 12)]$,
$>\quad \mathrm{x}=-6 \ldots 6, \mathrm{y}=-3 \ldots 3)$;

[An animation is another possibility. I'm not using animate here because premature evaluation would cause trouble.

```
> with(plots):
    display([seq(plot (exp (x) -P (n, x) , x=-7 . .7,y=-3 . .3,
    title=('n'=n)), n=1..16)], insequence=true);
```


It's almost (but not quite) true that the curves for $\mathrm{x}>0$ march off to the right at a constant rate of e^{-1} per step.
$>$ display ([seq(plot (exp (x+n*exp (-1)) - P(n, x+n*exp (-1)), $x=-1$.. 1.5, $y=-1$.. 2,title=('n'=n)), n=1..50)],insequence= true);

$=$ We'd get a very different picture for e.g. $\arctan (x)$. Here's the Taylor series:
$>$ convert (arctan(x),FormalPowerSeries, x) ;

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1} \tag{2.1}
\end{equation*}
$$

```
\(>P:=(n, t) \rightarrow \operatorname{subs}(x=t\), convert (taylor \((\arctan (x), x=0, n+1)\),
    polynom));
    \(P:=(n, t) \rightarrow \operatorname{subs}(x=t\), convert \((\operatorname{taylor}(\arctan (x), x=0,1+n)\), polynom \())\)
\(>P(7, t)\);
                        \(t-\frac{1}{3} t^{3}+\frac{1}{5} t^{5}-\frac{1}{7} t^{7}\)
\(=>P(8, t) ;\)
    \(t-\frac{1}{3} t^{3}+\frac{1}{5} t^{5}-\frac{1}{7} t^{7}\)
\([>\operatorname{plot}([\operatorname{seq}(\arctan (x)-P(2 * n, x), n=1 \ldots 12)], x=-2 \ldots 2\),
    \(y=-3 . .3)\);
```



```
. 3,title=('Order'=2*n)),
n = 1..30)], insequence=true);
```


The difference here is that the radius of convergence for arctan is 1 , while for exp it is ∞. Outside the interval $[-1,1]$, the series for \arctan is useless for approximating $\arctan (x)$.

Manipulation with series

Various operations can be done to obtain new series from old series:
the basic operations of arithmetic, as well as substitution, differentiation and integration.

Example 1:

[Starting with series any good Math 101 student should know, obtain the degree 10 Maclaurin Lpolynomial for $\ln \left(1+x^{2}\right) \sin (\cos (x))$.
[For example, the series for $\frac{1}{1-t}$ is a geometric series.
[> s1 $:=1 /(1-t)=$ convert(taylor (1/(1-t), $t=0,10)$, polynom);

$$
s l:=\frac{1}{1-t}=1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}
$$

[Of course that's not literally true, it's just the first part of the series. But for some of the

Lmanipulations to work, I want a polynomial rather than a series.
Integrate this term-by-term and you have the series for $-\ln (1-t)$. Note that the constants of integration are the same, because both sides are 0 at $t=0$.

$$
\begin{aligned}
> & \text { s2 }:=\text { int (lhs (s1), t) }=\text { int (rhs (s1), t); } \\
s 2: & -\ln (1-t)=t+\frac{1}{2} t^{2}+\frac{1}{3} t^{3}+\frac{1}{4} t^{4}+\frac{1}{5} t^{5}+\frac{1}{6} t^{6}+\frac{1}{7} t^{7}+\frac{1}{8} t^{8}+\frac{1}{9} t^{9} \\
& +\frac{1}{10} t^{10}
\end{aligned}
$$

[Change signs and substitute $t=-x^{2}$ and you have the series for $\ln \left(1+x^{2}\right)$.

$$
\begin{aligned}
> & \text { s3 }:=\text { eval }\left(-s 2, \quad t=-\mathbf{x}^{\wedge} 2\right) ; \\
s 3: & =\ln \left(1+x^{2}\right)=x^{2}-\frac{1}{2} x^{4}+\frac{1}{3} x^{6}-\frac{1}{4} x^{8}+\frac{1}{5} x^{10}-\frac{1}{6} x^{12}+\frac{1}{7} x^{14}-\frac{1}{8} x^{16} \\
& +\frac{1}{9} x^{18}-\frac{1}{10} x^{20}
\end{aligned}
$$

[That's way more terms than we need, we only want a degree-10 polynomial.
> s4 := lhs(s3) = convert (taylor(rhs(s3), $x, 11$), polynom);

$$
s 4:=\ln \left(1+x^{2}\right)=x^{2}-\frac{1}{2} x^{4}+\frac{1}{3} x^{6}-\frac{1}{4} x^{8}+\frac{1}{5} x^{10}
$$

That's one of the factors. Now for the $\sin (\cos (x))$. The Maclaurin series for $\cos (\mathrm{x})$ and $\sin (\mathrm{t})$ are also "known".

```
> convert(cos(x),FormalPowerSeries,x);
```

 convert (sin(x),FormalPowerSeries,x) ;
 \(\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}\)
 \(\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}\)
 $$
\begin{align*}
> & \mathbf{s} 5:= \tag{3.1.1}\\
s 5:= & \cos (x)=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}-\frac{1}{3628800} x^{10} \\
= & \mathbf{s} 6:= \\
& \sin (\mathbf{x})=\text { convert (taylor }(\sin (\mathbf{x}), \mathbf{x}, 11), \text { polynom); } \\
& s 6:=\sin (x)=x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{align*}
$$

Now I want $\sin (\cos (x))$, which is approximately $\sin (s 5)$.
But it would be wrong to use the Taylor series of $\sin (t)$ about $t=0$. When x is small, $\cos (x)$ is near 1 , not near 0 . So we want a series for $\sin (t)$ about $t=1$. A trigonometric identity relates $\sin (t)$ to \sin and \cos of $t-1$:
$>$ trigident:= eval (sin (1+s)=expand (sin (1+s)),s=t-1);
trigident $:=\sin (t)=\sin (1) \cos (t-1)+\cos (1) \sin (t-1)$
> s7 := eval (s5,x=t-1);
$s 7:=\cos (t-1)=1-\frac{1}{2}(t-1)^{2}+\frac{1}{24}(t-1)^{4}-\frac{1}{720}(t-1)^{6}+\frac{1}{40320}(t-1)^{8}$

$$
\begin{aligned}
& -\frac{1}{3628800}(t-1)^{10} \\
& \text { [> s8 := eval (s6,x=t-1); } \\
& s 8:=\sin (t-1)=t-1-\frac{1}{6}(t-1)^{3}+\frac{1}{120}(t-1)^{5}-\frac{1}{5040}(t-1)^{7}+\frac{1}{362880}(t \\
& -1)^{9} \\
& \text { > s9 := eval(trigident, }\{\mathrm{s} 7, \mathrm{~s} 8\} \text {); } \\
& s 9:=\sin (t)=\sin (1)\left(1-\frac{1}{2}(t-1)^{2}+\frac{1}{24}(t-1)^{4}-\frac{1}{720}(t-1)^{6}+\frac{1}{40320}(t\right. \\
& \left.-1)^{8}-\frac{1}{3628800}(t-1)^{10}\right)+\cos (1)\left(t-1-\frac{1}{6}(t-1)^{3}+\frac{1}{120}(t-1)^{5}\right. \\
& \left.-\frac{1}{5040}(t-1)^{7}+\frac{1}{362880}(t-1)^{9}\right) \\
& \overline{=}>\operatorname{s10}:=\sin (t)=\text { convert(taylor(rhs (s9),t=1,11), polynom); } \\
& s 10:=\sin (t)=\sin (1)+\cos (1)(t-1)-\frac{1}{2} \sin (1)(t-1)^{2}-\frac{1}{6} \cos (1)(t-1)^{3} \\
& +\frac{1}{24} \sin (1)(t-1)^{4}+\frac{1}{120} \cos (1)(t-1)^{5}-\frac{1}{720} \sin (1)(t-1)^{6} \\
& -\frac{1}{5040} \cos (1)(t-1)^{7}+\frac{1}{40320} \sin (1)(t-1)^{8}+\frac{1}{362880} \cos (1)(t-1)^{9} \\
& -\frac{1}{3628800} \sin (1)(t-1)^{10} \\
& {[>\operatorname{sil}:=\operatorname{eval}(\operatorname{lhs}(s 10), t=\cos (x))=\operatorname{eval}(\mathrm{rhs}(s 10), t=\operatorname{rhs}(s 5))} \\
& \text {; } \\
& s 11:=\sin (\cos (x))=\sin (1)+\cos (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)-\frac{1}{2} \sin (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{2}-\frac{1}{6} \cos (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{3}+\frac{1}{24} \sin (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{4}+\frac{1}{120} \cos (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{5}-\frac{1}{720} \sin (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{6}-\frac{1}{5040} \cos (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{7}+\frac{1}{40320} \sin (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}\right. \\
& \left.-\frac{1}{3628800} x^{10}\right)^{8}+\frac{1}{362880} \cos (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{40320} x^{8}-\frac{1}{3628800} x^{10}\right)^{9}-\frac{1}{3628800} \sin (1)\left(-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right. \\
& \left.-\frac{1}{720} x^{6}+\frac{1}{40320} x^{8}-\frac{1}{3628800} x^{10}\right)^{10} \\
& \text { [> s12 := lhs (\%) = convert(taylor(rhs (\%), } \mathrm{x}, 11 \text {), polynom); } \\
& s 12:=\sin (\cos (x))=\sin (1)-\frac{1}{2} \cos (1) x^{2}+\left(\frac{1}{24} \cos (1)-\frac{1}{8} \sin (1)\right) x^{4} \\
& +\left(\frac{7}{360} \cos (1)+\frac{1}{48} \sin (1)\right) x^{6}+\left(-\frac{209}{40320} \cos (1)+\frac{1}{960} \sin (1)\right) x^{8} \\
& +\left(\frac{1259}{3628800} \cos (1)-\frac{193}{241920} \sin (1)\right) x^{10} \\
& \text { EAnd finally: } \\
& >\text { lhs (s4) *lhs (s12) = convert (taylor (rhs (s4)*rhs (s12), } \mathrm{x}, 11 \text {), } \\
& \text { polynom); } \\
& \ln \left(1+x^{2}\right) \sin (\cos (x))=\sin (1) x^{2}+\left(-\frac{1}{2} \cos (1)-\frac{1}{2} \sin (1)\right) x^{4}+\left(\frac{7}{24} \cos (1)\right. \\
& \left.+\frac{5}{24} \sin (1)\right) x^{6}+\left(-\frac{121}{720} \cos (1)-\frac{1}{6} \sin (1)\right) x^{8}+\left(\frac{143}{960} \sin (1)\right. \\
& \left.+\frac{4999}{40320} \cos (1)\right) x^{10}
\end{aligned}
$$

EOf course, we could have used one "taylor" command, this was just to see how it could be done.
$>\operatorname{taylor}\left(\ln \left(1+x^{\wedge} 2\right) * \sin (\cos (x)), x, 11\right)$;
$\sin (1) x^{2}+\left(-\frac{1}{2} \cos (1)-\frac{1}{2} \sin (1)\right) x^{4}+\left(\frac{7}{24} \cos (1)+\frac{5}{24} \sin (1)\right) x^{6}+($
$\left.-\frac{121}{720} \cos (1)-\frac{1}{6} \sin (1)\right) x^{8}+\left(\frac{143}{960} \sin (1)+\frac{4999}{40320} \cos (1)\right) x^{10}+\mathrm{O}\left(x^{12}\right)$
[$>$ taylor (rhs (\% \%) $-\%$, x, 11);

$$
\begin{equation*}
\mathrm{O}\left(x^{12}\right) \tag{3.1.2}
\end{equation*}
$$

Example 2:

[Find the Taylor series for $f(x)$ about $x=0$ up to the x^{6} term, if $y=f(x)$ satisfies the equation $(1+x) \mathrm{e}^{y}-y^{2} \mathrm{e}^{x}=1+x^{2} y$ with $f(0)=0$.
$>\mathrm{eq}:=(1+\mathrm{x}) * \exp (\mathrm{y})-\mathrm{y}^{\wedge} 2 * \exp (\mathrm{x})=1+\mathrm{x}^{\wedge} 2 * \mathrm{y}$;

$$
e q:=(1+x) \mathrm{e}^{y}-y^{2} \mathrm{e}^{x}=1+x^{2} y
$$

Check that it works with $f(0)=0$.

$$
[>\text { eval }(\text { eq, }\{x=0, y=0\}) ; \quad 1=1
$$

[So we want the first 6 terms to look like this:

$$
\begin{aligned}
>\text { yseries }:= & \operatorname{add}\left(\mathrm{a}[\mathrm{n}] * \mathbf{x}^{\wedge} \mathrm{n}, \mathrm{n}=1 \ldots 6\right) ; \\
& y \text { series }:=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}
\end{aligned}
$$

[Substitute this in to the difference of the two sides of the equation.
$>$ eval(lhs (eq) -rhs (eq), $\mathrm{y}=\mathrm{yseries})$;
$(1+x) \mathrm{e}^{a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}}-\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}\right.$

$$
\left.+a_{6} x^{6}\right)^{2} \mathrm{e}^{x}-1-x^{2}\left(a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\right)
$$

$>$ taylor (\%, x, 7);
$\left(a_{1}+1\right) x+\left(-\frac{1}{2} a_{1}^{2}+a_{2}+a_{1}\right) x^{2}+\left(a_{3}-a_{1} a_{2}+\frac{1}{6} a_{1}^{3}+a_{2}-\frac{1}{2} a_{1}^{2}-a_{1}\right) x^{3}$
$+\left(a_{3}-a_{1} a_{2}+\frac{1}{6} a_{1}^{3}+a_{4}-a_{1} a_{3}-\frac{1}{2} a_{2}^{2}+\frac{1}{2} a_{2} a_{1}^{2}+\frac{1}{24} a_{1}^{4}-\frac{1}{2} a_{1}^{2}-a_{2}\right) x^{4}$
$+\left(a_{5}-a_{1} a_{4}-a_{3} a_{2}+\frac{1}{2} a_{3} a_{1}^{2}+\frac{1}{2} a_{1} a_{2}^{2}+\frac{1}{6} a_{2} a_{1}^{3}+\frac{1}{120} a_{1}^{5}+a_{4}-a_{1} a_{3}\right.$
$\left.-\frac{1}{2} a_{2}^{2}+\frac{1}{2} a_{2} a_{1}^{2}+\frac{1}{24} a_{1}^{4}-a_{1} a_{2}-\frac{1}{6} a_{1}^{2}-a_{3}\right) x^{5}+\left(a_{3} a_{1} a_{2}-a_{4}+a_{5}+a_{6}\right.$
$+\frac{1}{120} a_{1}^{5}+\frac{1}{6} a_{2}^{3}+\frac{1}{720} a_{1}^{6}-\frac{1}{24} a_{1}^{2}-\frac{1}{3} a_{1} a_{2}-a_{1} a_{3}-\frac{1}{2} a_{2}^{2}-a_{1} a_{4}-a_{3} a_{2}$
$+\frac{1}{2} a_{3} a_{1}^{2}+\frac{1}{2} a_{1} a_{2}^{2}+\frac{1}{6} a_{2} a_{1}^{3}-a_{1} a_{5}-a_{4} a_{2}+\frac{1}{2} a_{4} a_{1}^{2}-\frac{1}{2} a_{3}^{2}+\frac{1}{6} a_{3} a_{1}^{3}$
$\left.+\frac{1}{4} a_{2}^{2} a_{1}^{2}+\frac{1}{24} a_{2} a_{1}^{4}\right) x^{6}+\mathrm{O}\left(x^{7}\right)$
LNow the coefficients of each power of x should match.
$>$ equations: $=\{\operatorname{seq}(\operatorname{coeff}(\%, x, n), n=1 \ldots 6)\} ;$
equations $:=\left\{a_{1}+1,-\frac{1}{2} a_{1}^{2}+a_{2}+a_{1}, a_{3}-a_{1} a_{2}+\frac{1}{6} a_{1}^{3}+a_{2}-\frac{1}{2} a_{1}^{2}-a_{1}, a_{3}-a_{1} a_{2}\right.$

$$
+\frac{1}{6} a_{1}^{3}+a_{4}-a_{1} a_{3}-\frac{1}{2} a_{2}^{2}+\frac{1}{2} a_{2} a_{1}^{2}+\frac{1}{24} a_{1}^{4}-\frac{1}{2} a_{1}^{2}-a_{2}, a_{5}-a_{1} a_{4}-a_{3} a_{2}
$$

$$
+\frac{1}{2} a_{3} a_{1}^{2}+\frac{1}{2} a_{1} a_{2}^{2}+\frac{1}{6} a_{2} a_{1}^{3}+\frac{1}{120} a_{1}^{5}+a_{4}-a_{1} a_{3}-\frac{1}{2} a_{2}^{2}+\frac{1}{2} a_{2} a_{1}^{2}
$$

$$
+\frac{1}{24} a_{1}^{4}-a_{1} a_{2}-\frac{1}{6} a_{1}^{2}-a_{3}, a_{3} a_{1} a_{2}-a_{4}+a_{5}+a_{6}+\frac{1}{120} a_{1}^{5}+\frac{1}{6} a_{2}^{3}+\frac{1}{720}
$$

$$
a_{1}^{6}-\frac{1}{24} a_{1}^{2}-\frac{1}{3} a_{1} a_{2}-a_{1} a_{3}-\frac{1}{2} a_{2}^{2}-a_{1} a_{4}-a_{3} a_{2}+\frac{1}{2} a_{3} a_{1}^{2}+\frac{1}{2} a_{1} a_{2}^{2}
$$

$$
\left.+\frac{1}{6} a_{2} a_{1}^{3}-a_{1} a_{5}-a_{4} a_{2}+\frac{1}{2} a_{4} a_{1}^{2}-\frac{1}{2} a_{3}^{2}+\frac{1}{6} a_{3} a_{1}^{3}+\frac{1}{4} a_{2}^{2} a_{1}^{2}+\frac{1}{24} a_{2} a_{1}^{4}\right\}
$$

[$>$ solve (equations);

$$
\left\{a_{1}=-1, a_{2}=\frac{3}{2}, a_{3}=-\frac{10}{3}, a_{4}=\frac{23}{3}, a_{5}=-\frac{1097}{60}, a_{6}=\frac{8117}{180}\right\}
$$

So here is our answer.
$>$ answer:= eval(yseries, \%);

$$
\text { answer }:=-x+\frac{3}{2} x^{2}-\frac{10}{3} x^{3}+\frac{23}{3} x^{4}-\frac{1097}{60} x^{5}+\frac{8117}{180} x^{6}
$$

[I'll check this graphically.
> with(plots):

```
P0:= implicitplot(eq, x=-1..1,y=-1..2,colour=blue):
for j from 1 to 6 do
    frame[j]:= display([P0,plot(convert(taylor(answer, x, j+1),
polynom),x=-1..1)],title=('Degree'=j))
end do:
display([seq(frame[j],j=1..6)],insequence=true,view=[-1..1,
-1..2]);
```


EHere's a look at the curve on a larger scale.
$>$ implicitplot (eq, $x=-10 . .10, y=-10.10$, gridrefine $=3$);

[Rather than doing this with solve, you can use a version of Newton's method.
> f:= unapply(lhs (eq)-rhs (eq), (x, y));

$$
f:=(x, y) \rightarrow(1+x) \mathrm{e}^{y}-y^{2} \mathrm{e}^{x}-1-x^{2} y
$$

$>$ newt: $=(\mathrm{y}, \mathrm{n}) \rightarrow$ convert (normal (taylor $(\mathrm{y}-\mathrm{f}(\mathrm{x}, \mathrm{y}) / \mathrm{D}[2](\mathrm{f})(\mathrm{x}$, y), $\mathbf{x}, \mathrm{n})$), polynom); newt $:=(y, n) \rightarrow$ convert $\left(\right.$ normal $\left(\right.$ taylor $\left.\left(y-\frac{f(x, y)}{\mathrm{D}_{2}(f)(x, y)}, x, n\right)\right)$, polynom $)$
$\bar{T}>$ y1 $:=$ newt $(0,2)$;

$$
y 1:=-x
$$

$\overline{=}>y^{2}:=$ newt $(y 1,4) ;$

$$
y 2:=-x+\frac{3}{2} x^{2}-\frac{10}{3} x^{3}
$$

$>$ normal (taylor (y2 - answer, $\mathrm{x}, 4$));

$$
\mathrm{O}\left(x^{4}\right)
$$

$\left[\right.$ How does this work? If $f\left(x, y_{k}\right)=\mathrm{O}\left(x^{k}\right)$ and $\frac{\partial}{\partial y} f\left(x, y_{k}\right)$ has a nonzero limit as $x \rightarrow 0$, then I

$$
\begin{aligned}
& \operatorname{claim} f\left(x, y_{k+1}\right)=\mathrm{O}\left(x^{2 k}\right) \text { where } y_{k+1}=y_{k}-\frac{f\left(x, y_{k}\right)}{\frac{\partial}{\partial y} f\left(x, y_{k}\right)} . \text { In fact } \\
& \begin{array}{r}
f\left(x, y_{k+1}\right)=f\left(x, y_{k}\right)+\frac{\partial}{\partial y} f\left(x, y_{k}\right)\left(y_{k+1}-y_{k}\right)+\mathrm{O}\left(\left(y_{k+1}-y_{k}\right)^{2}\right) \\
=\mathrm{O}\left(\left(y_{k+1}-y_{k}\right)^{2}\right) \text { and } y_{k+1}-y_{k}=\mathrm{O}\left(x^{k}\right)
\end{array}
\end{aligned}
$$

In other words, once you get an approximation that works to a certain order $\mathrm{O}\left(x^{k}\right)$, each application of Newton's method will at least double the order of approximation.

Maple objects introduced in this lesson

convert(..., FormalPowerSeries, ...)

