
(1.3)(1.3)

(1.1)(1.1)

(1.6)(1.6)

(1.2)(1.2)

(1.4)(1.4)

(1.5)(1.5)

Lesson 24: Taylor series
restart;

Finding Taylor series
As we saw last time, Maple has the taylor command to find a given number of terms of a Taylor
series of an expression.

taylor((exp(x)-1-x)/x^2, x);

But what if instead of the first few terms of the series, you want a formula for the whole series?
This isn't always going to work, but sometimes it will:

convert((exp(x)-1-x)/x^2, FormalPowerSeries, x);

value(%);

If you want a series about some other point, say :
convert(exp(x), FormalPowerSeries, x=a);

convert(exp(x+x^2), FormalPowerSeries,x);

e

Maple doesn't know a formula for the coefficients of the Maclaurin series of . Well, there isn't
a very nice formula for them, as far as I know.

taylor(exp(x+x^2),x,10);

Convergence of Taylor series
Let's look at the Maclaurin series for the function and its convergence to . It's convenient to
define a function that will calculate the n'th degree Maclaurin polynomial at a given point.

P:= (n,t) -> eval(convert(taylor(exp(x), x=0, n+1),

polynom), x=t);

P(4,t); P(4,2);

7

plot([exp(x), seq(P(n, x), n=1 .. 10)],

 x=-6 .. 2, y=-2 .. 8);

x
0 1 2

y

2

4

6

8

Especially for , it's more informative to look at the difference between and the Maclaurin
polynomial.

plot([seq(exp(x)-P(n, x), n=1 .. 12)],

 x = -6 .. 6, y = -3 .. 3);

x
0 2 4 6

y

1

2

3

An animation is another possibility. I'm not using animate here because premature evaluation
would cause trouble.

with(plots):

display([seq(plot(exp(x)-P(n,x),x=-7..7,y=-3..3,

 title=('n'=n)), n=1..16)], insequence=true);

x
0 2 4 6

y

1

2

3
n = 1

It's almost (but not quite) true that the curves for x > 0 march off to the right at a constant rate of
per step.

display([seq(plot(exp(x+n*exp(-1)) - P(n, x+n*exp(-1)),

x=-1 .. 1.5, y = -1 .. 2,title=('n'=n)),n=1..50)],insequence=

true);

(2.1)(2.1)

x
0 1

y 1

2
n = 1

We'd get a very different picture for e.g. . Here's the Taylor series:
convert(arctan(x),FormalPowerSeries,x);

P := (n,t) -> subs(x=t,convert(taylor(arctan(x), x=0, n+1),

polynom));

P(7,t);

P(8,t);

plot([seq(arctan(x)-P(2*n,x), n=1..12)], x=-2 .. 2,

y = -3 .. 3);

x
0 1 2

y

1

2

3

display([seq(plot(arctan(x)-P(2*n,x),x = 0.7 .. 1.3, y = -3 .

. 3,title=('Order'=2*n)),

n = 1..30)], insequence=true);

x

y 0

1

2

3
Order = 2

The difference here is that the radius of convergence for arctan is 1, while for exp it is . Outside
the interval [-1,1], the series for arctan is useless for approximating .

Manipulation with series
Various operations can be done to obtain new series from old series:
the basic operations of arithmetic, as well as substitution, differentiation and integration.

Example 1:
Starting with series any good Math 101 student should know, obtain the degree 10 Maclaurin
polynomial for .

For example, the series for is a geometric series.

s1 := 1/(1-t) = convert(taylor(1/(1-t), t=0, 10),polynom);

Of course that's not literally true, it's just the first part of the series. But for some of the

(3.1.1)(3.1.1)

manipulations to work, I want a polynomial rather than a series.
Integrate this term-by-term and you have the series for . Note that the constants of
integration are the same, because both sides are 0 at .

s2 := int(lhs(s1),t) = int(rhs(s1),t);

Change signs and substitute and you have the series for .
s3 := eval(-s2, t=-x^2);

That's way more terms than we need, we only want a degree-10 polynomial.
s4 := lhs(s3) = convert(taylor(rhs(s3),x,11),polynom);

That's one of the factors. Now for the . The Maclaurin series for cos(x) and sin(t)
are also "known".

convert(cos(x),FormalPowerSeries,x);

convert(sin(x),FormalPowerSeries,x);

s5 := cos(x) = convert(taylor(cos(x),x,11),polynom);

s6 := sin(x) = convert(taylor(sin(x),x,11),polynom);

Now I want , which is approximately .
But it would be wrong to use the Taylor series of about . When is small, is
near 1, not near 0. So we want a series for about . A trigonometric identity relates

 to sin and cos of :
trigident:= eval(sin(1+s)=expand(sin(1+s)),s=t-1);

s7 := eval(s5,x=t-1);

s8 := eval(s6,x=t-1);

s9 := eval(trigident,{s7,s8});

s10 := sin(t) = convert(taylor(rhs(s9),t=1,11),polynom);

s11 := eval(lhs(s10),t=cos(x)) = eval(rhs(s10),t = rhs(s5))

;

(3.1.2)(3.1.2)

s12 := lhs(%) = convert(taylor(rhs(%),x,11),polynom);

And finally:
lhs(s4)*lhs(s12)=convert(taylor(rhs(s4)*rhs(s12),x,11),

polynom);

Of course, we could have used one "taylor" command, this was just to see how it could be done.
taylor(ln(1+x^2)*sin(cos(x)),x,11);

taylor(rhs(%%)-%, x, 11);

Example 2:
Find the Taylor series for about up to the term, if satisfies the equation

 with .
eq:= (1+x)*exp(y)-y^2*exp(x)=1+ x^2*y;

Check that it works with .
eval(eq,{x=0,y=0});

So we want the first 6 terms to look like this:
yseries := add(a[n]*x^n,n=1..6);

Substitute this in to the difference of the two sides of the equation.

eval(lhs(eq)-rhs(eq), y=yseries);

taylor(%, x, 7);

Now the coefficients of each power of x should match.
equations:= {seq(coeff(%,x,n),n=1..6)};

solve(equations);

So here is our answer.
answer:= eval(yseries, %);

I'll check this graphically.
with(plots):

P0:= implicitplot(eq,x=-1..1,y=-1..2,colour=blue):

for j from 1 to 6 do

 frame[j]:= display([P0,plot(convert(taylor(answer,x,j+1),

polynom),x=-1..1)],title=('Degree'=j))

end do:

display([seq(frame[j],j=1..6)],insequence=true,view=[-1..1,

-1..2]);

x
0 1

y 1

2
Degree = 1

Here's a look at the curve on a larger scale.
implicitplot(eq,x=-10..10,y=-10..10,gridrefine=3);

x
0 5 10

y 5

10

Rather than doing this with solve, you can use a version of Newton's method.
f:= unapply(lhs(eq)-rhs(eq),(x,y));

newt:= (y,n) -> convert(normal(taylor(y-f(x,y)/D[2](f)(x,

y), x, n)),polynom);

y1 := newt(0,2);

y2 := newt(y1,4);

normal(taylor(y2 - answer,x,4));

How does this work? If and has a nonzero limit as , then I

claim where In fact

 and

In other words, once you get an approximation that works to a certain order , each
application of Newton's method will at least double the order of approximation.

Maple objects introduced in this lesson

convert(..., FormalPowerSeries, ...)

